Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease

遗传预测因子、转录组生物标志物、

基本信息

  • 批准号:
    10212961
  • 负责人:
  • 金额:
    $ 75.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Over the last decade, scientists have accelerated their efforts to understand Alzheimer’s disease (AD). This has led to unprecedented knowledge of the genetic and biological bases of AD risk, and vast stores of valuable data for further mining. Understanding the genetic and biological risk states for AD is, in itself, extraordinarily valuable for guiding mechanistic studies, developing better diagnostics, and formulating therapeutics. But an understanding of risk states also has the benefit of allowing research on resilience to AD. Research on the genetic and biological bases of resilience necessarily lags behind the discovery of risk factors. Now, as the risk architecture of AD is coming into view, it is feasible to study resilience to AD in individuals who are cognitively normal despite being at elevated risk for the disease. The approach we have devised for identifying resilience factors is straightforward yet, to our knowledge, unprecedented. We identify unaffected individuals at the highest levels of multivariate risk, match them to affected individuals at equivalent levels of risk, and contrast these two subgroups to find residual variation associated with the absence of disease. In this project, we will capitalize on the wealth of existing high-throughput AD risk-factor results and data, and our involvement in many of the world’s largest AD consortia, to efficiently map resilience to AD at three levels (genetics, transcriptomics, and neuroimaging), and to integrate across these levels. In Aim 1, we will identify genetic variation associated with resilience to AD in the presence of elevated genetic risk conferred by APOE ε4 alleles, an elevated AD polygenic risk score, or an elevated AD polygenic hazard score. In Aim 2, we will mega-analyze all available transcriptomic data from studies of postmortem hippocampal tissue and of peripheral blood in AD to identify transcriptomic risk scores and machine-learning algorithms that maximally distinguish AD from cognitively normal control subjects, and scores and algorithms that then identify residual transcriptomic variation that offsets the transcriptomic risk in resilient controls. In Aim 3, we will identify an MRI-based structural brain signature that is associated with resilience to AD in the presence of an AD- associated cortical risk signature. Lastly, in our exploratory Aim 4, we will integrate genetic, transcriptomic, brain structural, and clinical data to identify biological relationships across Aims, and novel phenotypes of resilience. Collectively, these Aims will identify multivariate, genetic, transcriptomic, and brain-structural profiles of resilience to AD, as well as molecular, neurobiological, and clinical phenotypes stemming from AD- resilience genotypes.
项目摘要 在过去的十年里,科学家们加快了了解阿尔茨海默氏症的努力 疾病(AD)。这导致了对基因和生物学的前所未有的了解 AD风险的基础,以及用于进一步挖掘的大量有价值的数据。了解 阿尔茨海默病的遗传和生物风险状态本身就具有非凡的指导价值 机制研究,开发更好的诊断学,并制定治疗学。但是一个 对风险状态的理解还有利于对弹性的研究 广告。恢复力的遗传和生物学基础研究必然滞后 风险因素的发现。现在,随着AD的风险架构进入人们的视野, 研究认知正常的个体对AD的复原力是可行的 有更高的患病风险。我们为识别韧性而设计的方法 据我们所知,因素是直截了当的,是前所未有的。我们确认了未受影响的 多变量风险水平最高的个体,将他们与受影响的个体进行匹配 相同的风险水平,并对比这两个子组以找出残差 与没有疾病相关的。在这个项目中,我们将利用 现有的高吞吐量AD风险因素结果和数据,以及我们参与的许多 世界上最大的AD联盟,在三个级别高效地映射AD的复原力 (遗传学、转录学和神经成像),并在这些层面上整合。在……里面 目标1,我们将确定与AD恢复力相关的遗传变异 载脂蛋白Eε4等位基因导致的遗传风险增加,AD多基因风险增加 得分,或AD多基因危险得分升高。在目标2中,我们将对所有 可获得的转录数据来自死后海马组织和 AD患者外周血识别转录风险评分和机器学习 最大限度地区分AD和认知正常对照受试者的算法,以及 分数和算法,然后识别剩余的转录变异,以抵消 弹性对照中的转录切割风险。在目标3中,我们将确定一种基于MRI的结构 大脑信号与在AD存在的情况下对AD的弹性有关- 相关的皮质风险签名。最后,在我们的探索性目标4中,我们将整合 基因、转录本、脑结构和临床数据,以确定生物学 目标之间的关系,以及新的韧性表型。总而言之,这些目标 将确定复原力的多元、遗传、转录和脑结构特征 AD,以及AD的分子、神经生物学和临床表型- 韧性基因分型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen J Glatt其他文献

Stephen J Glatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen J Glatt', 18)}}的其他基金

Profiling the Functional Genetics of Health and Disease using BrainGENIE: The Brain Gene Expression and Network Imputation Engine
使用 BrainGENIE 分析健康和疾病的功能遗传学:大脑基因表达和网络插补引擎
  • 批准号:
    10435527
  • 财政年份:
    2021
  • 资助金额:
    $ 75.91万
  • 项目类别:
Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease
遗传预测因子、转录组生物标志物、
  • 批准号:
    10017121
  • 财政年份:
    2019
  • 资助金额:
    $ 75.91万
  • 项目类别:
Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease
遗传预测因子、转录组生物标志物、
  • 批准号:
    10456718
  • 财政年份:
    2019
  • 资助金额:
    $ 75.91万
  • 项目类别:
IMAGING AUTISM BIOMARKERS + RISK GENES
自闭症生物标志物风险基因成像
  • 批准号:
    8117635
  • 财政年份:
    2010
  • 资助金额:
    $ 75.91万
  • 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
  • 批准号:
    8303451
  • 财政年份:
    2008
  • 资助金额:
    $ 75.91万
  • 项目类别:
IMAGING AUTISM BIOMARKERS + RISK GENES
自闭症生物标志物风险基因成像
  • 批准号:
    7681644
  • 财政年份:
    2008
  • 资助金额:
    $ 75.91万
  • 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
  • 批准号:
    7694270
  • 财政年份:
    2008
  • 资助金额:
    $ 75.91万
  • 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
  • 批准号:
    7881404
  • 财政年份:
    2008
  • 资助金额:
    $ 75.91万
  • 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
  • 批准号:
    8073036
  • 财政年份:
    2008
  • 资助金额:
    $ 75.91万
  • 项目类别:
IMAGING AUTISM BIOMARKERS + RISK GENES
自闭症生物标志物风险基因成像
  • 批准号:
    7292326
  • 财政年份:
    2007
  • 资助金额:
    $ 75.91万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 75.91万
  • 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
  • 批准号:
    400097
  • 财政年份:
    2019
  • 资助金额:
    $ 75.91万
  • 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
  • 批准号:
    19K09017
  • 财政年份:
    2019
  • 资助金额:
    $ 75.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
  • 批准号:
    18K09531
  • 财政年份:
    2018
  • 资助金额:
    $ 75.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
  • 批准号:
    9766994
  • 财政年份:
    2018
  • 资助金额:
    $ 75.91万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 75.91万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 75.91万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 75.91万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9925164
  • 财政年份:
    2016
  • 资助金额:
    $ 75.91万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9345997
  • 财政年份:
    2016
  • 资助金额:
    $ 75.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了