Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
基本信息
- 批准号:10434956
- 负责人:
- 金额:$ 47.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBioinformaticsBiological AssayBiological ModelsBiologyCellsCellular biologyCharacteristicsComplementary DNAComplexConsumptionDNADataData SetDevelopmentDropoutEngineeringGenomeGenomicsGoalsHumanHuman BiologyHybridsLibrariesLymphocyteMethodsMolecularMolecular ComputationsPeripheralPhasePolymerasePreparationPrimer ExtensionProblem SolvingResearchSamplingSepharoseSignal TransductionSolidSourceTechniquesTechnologyVisionassay developmentbasecohortcomputer frameworkdata integrationexperimental studyhuman diseaseimprovedinnovationmagnetic beadspreservationprogramsscale upsingle cell sequencingtranscriptome sequencing
项目摘要
ABSTRACT
The overall goal of the proposed research program is to improve our understanding of single cell biology through
information maximization techniques, by applying molecular engineering and computational approaches in
sequencing. Specifically, single cell sequencing is rapidly becoming the predominant method for studying human
biology and disease because it removes the confounding factor of sequencing cell mixtures in bulk. However, it
has major pitfalls: significant material consumption during library preparation, noisy data readouts and signal
dropout, and unclear paths for data integration across datasets.
The overall vision of the proposed research program is to develop a pan-omic analysis strategy that enables
perpetual re-use of any single cell source material. It revolves around a hybrid molecular engineering and
computational framework that is loosely inspired by principles found in computing. The experimental core of the
proposed research program revolved around a new molecular technology referred to as APEX (‘Attachment-
based Primer EXtension’). The major innovation of APEX is the covalent conjugation of genomic material (i.e.
DNA or cDNA) to a solid phase support such as an agarose magnetic bead, followed by utilizing only polymerase-
based assays for non-destructive molecular interrogation.
In this project, we will focus APEX development on single cell transcriptome sequencing applications, with
general applicability to genome biology. As a model system, we will utilize peripheral lymphocytes as they consist
of complex subpopulations with distinct characteristics at multiple levels of omic features. The project will focus
on assay development and optimization, development of bioinformatic algorithms for data integration, and scale
up to large cohorts as a demonstration of the scalability of the technology.
摘要
拟议研究计划的总体目标是通过以下方式提高我们对单细胞生物学的理解
信息最大化技术,通过应用分子工程和计算方法,
测序具体而言,单细胞测序正迅速成为研究人类的主要方法。
因为它消除了批量测序细胞混合物的混杂因素。但
存在主要缺陷:在库准备期间消耗大量材料,数据读出和信号噪声
dropout和跨数据集的数据集成路径不明确。
拟议的研究计划的总体愿景是开发一个泛组学分析策略,
任何单细胞源材料的永久再利用。它围绕着一个混合分子工程,
一种松散的计算框架,其灵感来自于计算中发现的原理。的实验核心
拟议的研究计划围绕着一种新的分子技术,称为APEX('附件-
基于Primer Extension ')。APEX的主要创新是基因组物质的共价缀合(即,
DNA或cDNA)转移到固相支持物如琼脂糖磁珠上,然后仅利用聚合酶-
基于非破坏性分子询问的分析。
在这个项目中,我们将把APEX开发的重点放在单细胞转录组测序应用上,
对基因组生物学的普遍适用性。作为一个模型系统,我们将利用外周淋巴细胞,因为它们组成
在多个水平的组学特征上具有不同特征的复杂亚群。该项目将重点
分析开发和优化,开发用于数据集成的生物信息学算法,
作为该技术的可扩展性的证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Billy Tsz Cheong Lau其他文献
Billy Tsz Cheong Lau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Billy Tsz Cheong Lau', 18)}}的其他基金
Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
- 批准号:
10251080 - 财政年份:2020
- 资助金额:
$ 47.1万 - 项目类别:
Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
- 批准号:
10657366 - 财政年份:2020
- 资助金额:
$ 47.1万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 47.1万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 47.1万 - 项目类别:
Research Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 47.1万 - 项目类别:
Standard Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 47.1万 - 项目类别:
Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 47.1万 - 项目类别:
Cooperative Agreement
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 47.1万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 47.1万 - 项目类别:
Intramural
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 47.1万 - 项目类别:
Continuing Grant
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 47.1万 - 项目类别:
Standard Grant














{{item.name}}会员




