DataJoint Pipelines for Neurophysiology
神经生理学 DataJoint 管道
基本信息
- 批准号:10437673
- 负责人:
- 金额:$ 75.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdoptionAlgorithmsArchitectureAtlasesBRAIN initiativeBehaviorBooksBrainCalciumCellsClassificationCloud ServiceCollectionCustomDataData AnalysesData CollectionE-learningElectron MicroscopyElectrophysiology (science)FaceFosteringGuidelinesImageInternationalLearningLibrariesMethodsModalityNeurosciencesNomenclatureOntologyOutputPersonsPositioning AttributeProblem SetsResearchResource InformaticsSamplingScientistSensorySorting - Cell MovementTechniquesTransgenic OrganismsVirusWorkbasecomplex datacomputerized data processingdata ecosystemdata integritydata pipelinedata sharingdata toolsdesigndiverse dataexperimental studyhackathonimaging Segmentationinformatics toollight microscopyneurophysiologyonline resourceopen sourcetooltranscriptomics
项目摘要
The field of neuroscience and the BRAIN Initiative in particular are amassing a wealth of informatics resources for managing, analyzing, and sharing data. Yet every lab must solve similar sets of problems to integrate these tools into the particular workflows of their experiments: data entry, acquisition, processing, analysis, and visualization. We created DataJoint: an open-source general framework for experiment data pipelines and collaborative automated workflows . Either independently or with support from our company, dozens of research groups have adopted DataJoint for diverse data modalities such as multielectrode electrophysiology, calcium imaging, light and electron microscopy, behavior tracking, sensory stimulation, transcriptomics, and optogenetics. In these complex data ecosystems, DataJoint enables groups of scientists to collaborate with clear work flows while sharing data continuously and conserving data integrity.
To disseminate and integrate shared data pipelines into neuroscience practice, we propose to compile and disseminate a library of DataJoint Pipelines for Neurophysiology. We will extract essential motifs from DataJoint based open projects and organize them by data modality into a collection of curated, mutually-compatible modules stringing together data collection and computation. Documented and ready for de novo deployment, the modules will feature ancillary tools for data entry (electronic lab books), interactive graphical user inter faces adapted from existing projects (e.g. customizable data processing steps integrating popular algorithms for image segmentation and spike sorting), and integration of existing brain atlases, coordinate frameworks, ontologies for cell classification , and nomenclatures for viruses and transgenic lines. To foster uniform ontologies, we will harmonize these pipelines with emerging neurodata standards. The results of this work will be administered as an online resource showcasing the pipelines along with sample data, executable demos, and guidelines for deployment. Visitors will be able to customize, extend, and combine the modules into complete pipelines suitable for their particular experiments and learn the techniques for building new solutions. The modules will support diverse computing architectures, including specialized hardware and cloud services. We will also conduct web-based trainings and in-person hackathons to help accelerate the adoption of these tools in working neuroscience labs. Vathes LLC is uniquely positioned to perform this work as we co-develop data pipelines for collaborative projects such as IARPA's MICrONS, International Brain Lab, and BRAIN Initiative Ul9 pro jects. The output of this project will enable many new research groups to adopt DataJoint and to effectively integrate informatics tools into neuroscience practice.
神经科学领域,尤其是大脑计划,正在积累丰富的信息学资源,用于管理、分析和共享数据。然而,每个实验室都必须解决类似的问题,才能将这些工具整合到他们实验的特定工作流程中:数据输入、获取、处理、分析和可视化。我们创建了DataJoint:一个用于实验数据管道和协作自动化工作流的开源通用框架。无论是独立还是在我们公司的支持下,数十个研究小组已经将DataJoint应用于各种数据模式,如多电极电生理学、钙成像、光学和电子显微镜、行为跟踪、感觉刺激、转录和光扫描。在这些复杂的数据生态系统中,DataJoint使科学家团队能够通过清晰的工作流进行协作,同时持续共享数据并保护数据完整性。
为了将共享数据管道传播和集成到神经科学实践中,我们建议汇编和描述一个神经生理学数据连接管道图书馆。我们将从基于DataJoint的开放项目中提取必要的主题,并按照数据模式将它们组织成一个集合,这些模块经过精心策划,相互兼容,将数据收集和计算串联在一起。这些模块已记录在案,可随时重新部署,将具有数据输入的辅助工具(电子实验室书籍)、根据现有项目改编的交互式图形用户界面(例如,结合图像分割和棘波分类的流行算法的可定制数据处理步骤),以及整合现有的脑图谱、坐标框架、用于细胞分类的本体论以及病毒和转基因系的命名。为了促进统一的本体,我们将使这些管道与新兴的神经数据标准相协调。这项工作的结果将作为一个在线资源进行管理,展示管道以及示例数据、可执行演示和部署指南。参观者将能够定制、扩展和组合这些模块,形成适合他们特定实验的完整管道,并学习构建新解决方案的技术。这些模块将支持不同的计算架构,包括专门的硬件和云服务。我们还将进行基于网络的培训和面对面的黑客松,以帮助加快这些工具在神经科学实验室中的应用。Vathes LLC在为IARPA的微米、国际脑实验室和脑倡议Ul9项目等合作项目共同开发数据管道时,处于执行这项工作的独特地位。该项目的成果将使许多新的研究小组采用DataJoint,并将信息学工具有效地整合到神经科学实践中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitri Yatsenko其他文献
Dimitri Yatsenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitri Yatsenko', 18)}}的其他基金
DataJoint SciOps: A Managed Service for Neuroscience Data Workflows
DataJoint SciOps:神经科学数据工作流的托管服务
- 批准号:
10547509 - 财政年份:2022
- 资助金额:
$ 75.65万 - 项目类别:
DataJoint SciOps: A Managed Service for Neuroscience Data Workflows
DataJoint SciOps:神经科学数据工作流的托管服务
- 批准号:
10651888 - 财政年份:2022
- 资助金额:
$ 75.65万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 75.65万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 75.65万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 75.65万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 75.65万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 75.65万 - 项目类别:
Standard Grant