DataJoint SciOps: A Managed Service for Neuroscience Data Workflows
DataJoint SciOps:神经科学数据工作流的托管服务
基本信息
- 批准号:10547509
- 负责人:
- 金额:$ 108.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptedAdoptionAgreementAlgorithmsArchivesAutomationBrainBudgetsCloud ComputingCollaborationsCollectionCommunitiesComputer softwareCost ControlCustomDataData AnalysesData CollectionData ProtectionData ScienceDevelopmentDiseaseEffectivenessElementsEngineeringEnsureEnvironmentFosteringGenerationsGrantHealthHigh Performance ComputingInfrastructureInternationalInternetJointsMethodsNeurosciencesNeurosciences ResearchOccupationsOnline SystemsPerformancePhasePhysicsPopulation HeterogeneityProcessProductivityPublishingQuality ControlReportingReproducibilityResearchResolutionResourcesRoleScheduleScienceScientistSecureSelf ManagementServicesSmall Business Innovation Research GrantSpeedStandardizationSystemUnited States National Institutes of HealthUniversitiesVisualizationWorkautomated analysisbasecloud basedcloud platformcommercializationcomplex datacomputer infrastructurecostdata hostingdata infrastructuredata managementdata pipelinedata repositorydata toolsdesignexperimental studyflexibilitygraphical user interfaceinstrumentmemberneuroinformaticsneurophysiologyneurotechnologyopen dataopen sourceoperationplatform as a serviceprogramssatisfactionsoftware as a servicetool
项目摘要
Project summary
This SBIR proposal aims to address current challenges in data-driven neuroscience by implementing DataJoint
SciOps: a commercial service to help research labs implement computational workflows for data-intensive science
experiments. This turn-key service will organize secure data pipelines and automate analysis jobs based on scalable
cloud infrastructure while keeping the entire process transparent and reproducible. Progress in neuroscience relies
on analyzing vast amounts of complex data recorded by new generations of neurotechnologies. To analyze this data,
research teams develop advanced algorithms and share them as open-source software. These software toolchains
require advanced computing infrastructure and operations, posing a set of engineering hurdles to manage the
particular experiment workflows for data entry, acquisition, analysis, sharing, and publishing. DataJoint SciOps
is made possible by the DataJoint Elements program (NIH Grant U24 NS116470), which provides a collection of
community-curated software modules for building standardized computational workflows. These designs integrate
best-in-class open-source analysis software from leading research teams and provide integrations with neuroscience
infrastructure projects. DataJoint SciOps will effectively serve as the commercial extension of DataJoint Elements
by providing computing infrastructure, hosting, and a managed service with subject-matter expert support and
customization services.
This Direct-to-Phase II commercialization project will develop and validate a comprehensive managed service for
executing data-centric neuroscience projects with robust automated processes for data management and analysis
(Aim 1). A cloud-based software-as-a-service platform will streamline the service to enable scaling to hundreds of
labs through standardization, self-service, and process automation (Aim 2). In the process, DataJoint will partner
with Johns Hopkins University's Applied Physics Lab to integrate the platform with neuroinformatics resources and
provide collaboration interfaces (Aim 3). Jointly, the teams will ensure the transparency and reproducibility of the
managed workflows and integrate it with other data infrastructure programs in the U.S. and internationally.
With several thousand neuroscience research groups seeking to adopt advanced neurotechnology instruments and
analysis tools, the commercially operated DataJoint SciOps service will lower the technological and organizational
barriers for efficient and reproducible research.
1
项目摘要
该SBIR提案旨在通过实施DataJoint来解决数据驱动神经科学的当前挑战。
SciOps:帮助研究实验室为数据密集型科学实施计算工作流程的商业服务
实验这项交钥匙服务将组织安全的数据管道,并基于可扩展的
云基础设施,同时保持整个过程的透明性和可复制性。神经科学的进步依赖于
分析新一代神经技术记录的大量复杂数据。为了分析这些数据,
研究团队开发先进的算法,并将其作为开源软件共享。这些软件工具链
需要先进的计算基础设施和操作,造成了一系列工程障碍,以管理
特定的实验工作流程用于数据输入、获取、分析、共享和发布。DataJoint SciOps
DataJoint Elements计划(NIH Grant U24 NS116470)使之成为可能,该计划提供了一系列
社区策划的软件模块,用于构建标准化的计算工作流程。这些设计整合了
来自领先研究团队的一流开源分析软件,并提供与神经科学的集成
基础设施项目DataJoint SciOps将有效地作为DataJoint Elements的商业扩展
通过提供计算基础设施、托管和托管服务以及主题专家支持,
定制服务。
这个直接进入第二阶段的商业化项目将开发和验证一个全面的管理服务,
使用强大的自动化数据管理和分析流程执行以数据为中心的神经科学项目
(Aim 1)。基于云的软件即服务平台将简化服务,
通过标准化、自助服务和流程自动化(目标2),在此过程中,DataJoint将与
与约翰霍普金斯大学应用物理实验室合作,将该平台与神经信息学资源整合,
提供协作接口(目标3)。各小组将共同确保
托管工作将其与美国和国际上的其他数据基础设施计划进行整合。
数千个神经科学研究小组寻求采用先进的神经技术仪器,
分析工具,商业运营的DataJoint SciOps服务将降低技术和组织成本,
有效和可重复研究的障碍。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitri Yatsenko其他文献
Dimitri Yatsenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitri Yatsenko', 18)}}的其他基金
DataJoint SciOps: A Managed Service for Neuroscience Data Workflows
DataJoint SciOps:神经科学数据工作流的托管服务
- 批准号:
10651888 - 财政年份:2022
- 资助金额:
$ 108.46万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 108.46万 - 项目类别:
Research Grant














{{item.name}}会员




