Michigan Center for Translational Cancer Proteogenomics

密歇根转化癌症蛋白质组学中心

基本信息

项目摘要

ABSTRACT This application aims to establish a Proteogenomic Data Analysis Center at the University of Michigan for the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our Center is anchored at the Michigan Center for Translational Pathology and brings together a multi-disciplinary team of leading scientific experts in the foundational areas of proteomics, cancer genomics, immunomics, and integrative systems biology. Our team established the foundations for precision oncology and proteogenomics at the University of Michigan and has a long history of successful inter-institutional collaborations. This positions us well to apply, working in close collaboration with other CPTAC groups, our innovative algorithms, comprehensive computational infrastructure, and expert knowledge to carry out high-impact translational proteogenomics research that is a core mission of the CPTAC. We have developed a balanced approach for integrative proteogenomic analyses, with a blend of both state-of-art and novel pipelines and tools. Our analytics support dual purpose - to perform both cohort-wide and patient centric (personalized) investigations – a unique future and a strength of our proposal. Our experience in support of our real-time precision oncology program and past CPTAC efforts will ensure both the fidelity of detecting diverse proteogenomic cancer driver events and rigorous ascertainment of their biological implications. Both of these features are of paramount importance to understand disease mechanisms and discover prognostic markers and therapeutic targets. Our proposed strategy combines well-established and innovative data analyses and modeling approaches, cognizant of continuing developments in the corresponding areas. In addition, we propose a conceptually novel approach of “integrative cellular network analysis” and advanced data visualization modules, capitalizing on recent advances in single cell and spatial proteogenomics research. These features will refine inference from the bulk tissue omics data in terms of tumor microenvironment, ploidy and cellularity, identification of cell of origin and clonal expansion, cell-cell interactions, distinguishing lineage versus cancer-specific biomarkers, and gene signatures associated with genetic and epigenetic alterations. Such precise and refined integrative analyses across genome and proteome data require advanced bioinformatics tools and stringent quality control measures. Our integrated genome/transcriptome/proteome pipelines – already in wide use by the research community - will be further optimized for speed and accuracy and enhanced with data visualization and report generation capabilities for presenting the findings to cancer biologists in a transparent and readily- interpreted manner. Furthermore, our extensive experience in the area of biomarker discovery and precision oncology, further enhanced through participation of our investigators in the EDRN, SPORE, and other NIH initiatives, puts us in a strong position to drive the biomarker prioritization work to select candidate cancer- specific proteins and peptides for subsequent targeted validation assays.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saravana Mohan Dhanasekaran其他文献

Saravana Mohan Dhanasekaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saravana Mohan Dhanasekaran', 18)}}的其他基金

Michigan Center for Translational Cancer Proteogenomics-Diversity Supplement
密歇根转化癌症蛋白质组学中心 - 多样性补充
  • 批准号:
    10814044
  • 财政年份:
    2022
  • 资助金额:
    $ 76.88万
  • 项目类别:
Michigan Center for Translational Cancer Proteogenomics
密歇根转化癌症蛋白质组学中心
  • 批准号:
    10636958
  • 财政年份:
    2022
  • 资助金额:
    $ 76.88万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 76.88万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 76.88万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 76.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了