Michigan Center for Translational Cancer Proteogenomics-Diversity Supplement

密歇根转化癌症蛋白质组学中心 - 多样性补充

基本信息

项目摘要

ABSTRACT This application aims to establish a Proteogenomic Data Analysis Center at the University of Michigan for the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our Center is anchored at the Michigan Center for Translational Pathology and brings together a multi-disciplinary team of leading scientific experts in the foundational areas of proteomics, cancer genomics, immunomics, and integrative systems biology. Our team established the foundations for precision oncology and proteogenomics at the University of Michigan and has a long history of successful inter-institutional collaborations. This positions us well to apply, working in close collaboration with other CPTAC groups, our innovative algorithms, comprehensive computational infrastructure, and expert knowledge to carry out high-impact translational proteogenomics research that is a core mission of the CPTAC. We have developed a balanced approach for integrative proteogenomic analyses, with a blend of both state-of-art and novel pipelines and tools. Our analytics support dual purpose - to perform both cohort-wide and patient centric (personalized) investigations – a unique future and a strength of our proposal. Our experience in support of our real-time precision oncology program and past CPTAC efforts will ensure both the fidelity of detecting diverse proteogenomic cancer driver events and rigorous ascertainment of their biological implications. Both of these features are of paramount importance to understand disease mechanisms and discover prognostic markers and therapeutic targets. Our proposed strategy combines well-established and innovative data analyses and modeling approaches, cognizant of continuing developments in the corresponding areas. In addition, we propose a conceptually novel approach of “integrative cellular network analysis” and advanced data visualization modules, capitalizing on recent advances in single cell and spatial proteogenomics research. These features will refine inference from the bulk tissue omics data in terms of tumor microenvironment, ploidy and cellularity, identification of cell of origin and clonal expansion, cell-cell interactions, distinguishing lineage versus cancer-specific biomarkers, and gene signatures associated with genetic and epigenetic alterations. Such precise and refined integrative analyses across genome and proteome data require advanced bioinformatics tools and stringent quality control measures. Our integrated genome/transcriptome/proteome pipelines – already in wide use by the research community - will be further optimized for speed and accuracy and enhanced with data visualization and report generation capabilities for presenting the findings to cancer biologists in a transparent and readily- interpreted manner. Furthermore, our extensive experience in the area of biomarker discovery and precision oncology, further enhanced through participation of our investigators in the EDRN, SPORE, and other NIH initiatives, puts us in a strong position to drive the biomarker prioritization work to select candidate cancer- specific proteins and peptides for subsequent targeted validation assays.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saravana Mohan Dhanasekaran其他文献

Saravana Mohan Dhanasekaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saravana Mohan Dhanasekaran', 18)}}的其他基金

Michigan Center for Translational Cancer Proteogenomics
密歇根转化癌症蛋白质组学中心
  • 批准号:
    10440158
  • 财政年份:
    2022
  • 资助金额:
    $ 12.39万
  • 项目类别:
Michigan Center for Translational Cancer Proteogenomics
密歇根转化癌症蛋白质组学中心
  • 批准号:
    10636958
  • 财政年份:
    2022
  • 资助金额:
    $ 12.39万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
  • 批准号:
    532685-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
  • 批准号:
    532685-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
biological interactions among forest-dwelling fungus gnats and their natural enemies in shiitake mashroom production area
香菇产区森林真菌蚊与其天敌之间的生物相互作用
  • 批准号:
    19K06152
  • 财政年份:
    2019
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
  • 批准号:
    532685-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
To what extent does governance play a role in how effectively a marine protected area in the Irish Sea reaches its biological and socioeconomic goals?
治理在多大程度上对爱尔兰海海洋保护区如何有效实现其生物和社会经济目标发挥作用?
  • 批准号:
    2287487
  • 财政年份:
    2019
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Studentship
War and Biological Ageing in Vietnam: A Planning Grant to Foster Collaboration on a Novel Area of Global Research in Health and Ageing
越南的战争与生物衰老:一项规划拨款,以促进全球健康与老龄化研究新领域的合作
  • 批准号:
    404425
  • 财政年份:
    2019
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Miscellaneous Programs
Impact assessment of Noctiluca scintillans red tide on nutrient dynamics, biological processes in lower trophic levels and material cycle in the neritic area of Sagami Bay
夜光藻赤潮对相模湾浅海区营养动态、低营养层生物过程和物质循环的影响评估
  • 批准号:
    18K05794
  • 财政年份:
    2018
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
  • 批准号:
    355863-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Discovery Grants Program - Individual
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
  • 批准号:
    355863-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical simulation and experimental study on biological weathering mechanism of the rock around coastal area in Yaeyama Islands
八重山群岛沿岸岩石生物风化机制的理论模拟与实验研究
  • 批准号:
    26790079
  • 财政年份:
    2014
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了