TRD 3: MRI parameters reflecting tissue composition and microstructure
TRD 3:反映组织成分和微观结构的 MRI 参数
基本信息
- 批准号:10439905
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyAnisotropyAtlasesBiological MarkersBiological ProcessBloodBrainCalciumCharacteristicsDataDevelopmentDiagnosticDiffusionDiffusion Magnetic Resonance ImagingDiseaseFerritinFiberFingerprintFrequenciesGoalsHeadHemoglobinImageImaging DeviceIronLabelLeadLibrariesLipidsMagnetic Resonance ImagingMagnetismMeasurementMeasuresMetabolicMethodsMicroscopicMolecularMotionMyelinOrganPathogenicityPermeabilityPhysiologic pulsePhysiologicalPredispositionPrincipal InvestigatorProcessPropertyProteinsProtonsRadiology SpecialtyReadingRelaxationReportingResearch PersonnelResolutionResourcesRotationSamplingSequence AnalysisShapesSignal TransductionStructureTechnologyTestingTherapeutic InterventionTimeTissuesUniversitiesVariantWaterage relatedbasebrain tractcandidate markercontrast imagingdeep learningdensitydesigngray matterhigh resolution imagingimaging biomarkerimaging studyin vivoin vivo imaginglearning strategymagnetic fieldpotential biomarkerprofessorquantitative imagingradiologistreconstructionresponsestatistical learningsynergismtractographywater diffusionwhite matter
项目摘要
TRD3: MRI parameters reflecting tissue composition and microstructure
Lead Principal investigator: Peter van Zijl, Professor of Radiology
Co-investigators: Xu Li, Manisha Aggarwal, Hye-Young Heo, Jeremias Sulam, Susumu Mori
Consultant: Filip Szczepankiewicz (Lund University)
While TRDs 1 and 2 focus on MR approaches that measure actual physiological constants and metabolite
signals, the definition of a Quantitative Imaging Biomarker (QIB) goes much further. In TRD3 we therefore
exploit the inherent power of MRI to probe tissue composition and microstructure, the characteristics of
which can be accessed through a multitude of MRI phenomena and parameters that can be seen as
candidate biomarkers. The intensity and frequency of the water signal in an MRI voxel depend on the
local microscopic fields and field differences imposed by tissue compartments and molecules. In addition,
the motion of water measured by MRI is affected by compartment size and permeability, which may
change in disease and thus contain potential biomarker information. The overall goal of this TRD is to
design pulse sequences and analysis approaches to efficiently quantify MRI parameters that assess
tissue composition and microstructure. We have the following specific aims:
AIM 1: Development of compartmental filtering and diffusional encoding methods to probe tissue
microstructure.
AIM 2: Development of integrated susceptibility and diffusion tensor imaging (STI and DTI) for fiber
tractography, aiming at high resolution white matter fiber tractography in vivo. Gray matter iron content
and blood oxygenation will also be assessed from these high-resolution susceptibility images
AIM 3: Development of fast multi-parameter acquisition and analysis approaches for simultaneous
quantification of the MR-derived parameters in Aims 1 and 2 plus T1, T2(*), and Magnetization Transfer
Ratio (MTR).
The parameters obtained will be used to synthetically generate multiple image contrasts (synthetic MRI),
including conventional ones with which the radiologists are familiar for reading and that currently can be
acquired only separately. Eight CPs will be involved in optimizing the methods and testing these approaches
for biomarker potential. Eight SPs will use them to extend the information content in their studies. The
developed tissue markers together with the diagnostic parameters of TRD1 and TRD2 will be made available
to TRD4, which will develop statistical and deep learning technologies to combine them and make them
available in age-dependent multi-parameter brain atlases.
TRD3:反映组织成分和微观结构的 MRI 参数
首席研究员:Peter van Zijl,放射学教授
联合研究员:徐力、Manisha Aggarwal、Hye-Young Heo、Jeremias Sulam、Susumu Mori
顾问:Filip Szczepankiewicz(隆德大学)
TRD 1 和 2 侧重于测量实际生理常数和代谢物的 MR 方法
信号,定量成像生物标志物 (QIB) 的定义更进一步。因此,在 TRD3 中我们
利用 MRI 的固有能力来探测组织成分和微观结构、
可以通过多种 MRI 现象和参数来访问,这些现象和参数可以视为
候选生物标志物。 MRI 体素中水信号的强度和频率取决于
局部微观场和组织区室和分子造成的场差异。此外,
MRI 测量的水的运动受到隔室大小和渗透性的影响,这可能
疾病的变化,因此包含潜在的生物标志物信息。该 TRD 的总体目标是
设计脉冲序列和分析方法,以有效量化评估 MRI 参数
组织成分和微观结构。我们有以下具体目标:
目标 1:开发区室过滤和扩散编码方法来探测组织
微观结构。
目标 2:开发光纤集成磁化率和扩散张量成像(STI 和 DTI)
纤维束成像,旨在体内高分辨率白质纤维纤维束成像。灰质铁含量
血氧饱和度也将通过这些高分辨率磁敏感图像进行评估
目标 3:开发同时进行快速多参数采集和分析方法
目标 1 和 2 中 MR 衍生参数的量化以及 T1、T2(*) 和磁化传递
比率(地铁)。
获得的参数将用于综合生成多个图像对比(合成MRI),
包括放射科医生熟悉阅读且目前可以使用的常规内容
仅单独获得。八个 CP 将参与优化方法并测试这些方法
生物标志物潜力。八名 SP 将使用它们来扩展其研究中的信息内容。这
开发的组织标记物以及 TRD1 和 TRD2 的诊断参数将可供使用
TRD4 将开发统计和深度学习技术,将它们结合起来并使它们
可在年龄相关的多参数脑图谱中找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter CM Van Zijl其他文献
Peter CM Van Zijl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter CM Van Zijl', 18)}}的其他基金
TRD 3: MRI parameters reflecting tissue composition and microstructure
TRD 3:反映组织成分和微观结构的 MRI 参数
- 批准号:
10270100 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
TRD 3: MRI parameters reflecting tissue composition and microstructure
TRD 3:反映组织成分和微观结构的 MRI 参数
- 批准号:
10614612 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Studentship














{{item.name}}会员




