Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
基本信息
- 批准号:10439828
- 负责人:
- 金额:$ 39.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAmino AcidsBiocompatible MaterialsBiologicalBiological ProductsBiotechnologyCellsChemicalsComplexDNADNA MaintenanceFluorineGenesHomeostasisKidneyKnowledgeLibrariesLipidsLiquid substanceMediatingMetabolicMethodsMolecularNucleic AcidsPeptidesPharmacologyPhasePlayPropertyProteinsReagentResearchRibonucleoproteinsStructureStructure-Activity RelationshipTechnologyTestingTissuesbiomacromoleculedesigndrug discoveryimage guidedinsightnanoemulsionnanomedicinenovel therapeuticsphysical propertyprogramsrational designscaffoldsuccesstraffickingultrasounduptake
项目摘要
PROJECT SUMMARY
Organofluorine compounds possess attractive chemical, pharmacological and biological properties that have
allowed them to make paradigm shifts in the design of biopharmaceuticals and biologic materials. The
introduction of fluorine atoms into amino acids and nucleic acids opens a vast new chemical landscape with
which to alter the folding, stability, oligomerization propensity and bioactivity of peptides, proteins and DNA.
However, although shown to impart favorable properties, the impact of adding fluorine into biologic scaffolds is
rarely predictable. Further, increasing evidence suggests perfluorinated compounds promiscuously adsorb to
many of the fundamental building blocks of cells - including lipids, proteins and DNA - to elicit a plurality of
bioeffects. One of these effects, recently discovered by the PI’s lab, is the ability of organofluorine molecules to
direct protein and DNA assembly into fluorous microdomains that phase separate into fluorinated liquids without
denaturing the biologic. The PI has recently exploited these emergent properties to enable ultrasound-guidance
of fluorinated proteins in three-dimensional tissues. Building upon these preliminary findings, the proposed
research program will mechanistically explore how organofluorine compounds influence the structure and
function of adsorbed proteins and DNA and use these insights to guide the design of new supramolecular
assembled biomaterials. Our overarching hypothesis is that organofluorine compounds non-covalently adsorb
to proteins and DNA to direct their separation into fluorine-rich phases, which in turn alters their oligomeric
assembly, cellular fate and bioactivity. To test this assertion, we will expand our perfluorinated compound (PFC)
library to include a diversity of molecules with basic/acidic functionalities and heterocyclic moieties. We will use
this library to establish structure-activity relationships governing the ability of PFCs to adsorb proteins, and
investigate how PFC complexation alters protein cellular uptake, intracellular trafficking and bioactivity. In
parallel, we will use this library to study the molecular mechanisms mediating PFC-DNA interactions and examine
how PFC complexation alters DNA stability and metabolic homeostasis in exposed cells. Together, these studies
will establish a comprehensive mechanistic understanding of how PFCs interact with proteins and DNA and will
allow us to rationally design fluorous biotechnologies that exploit the unusual assembly phenomenon and phase-
separation properties that emerge. As an example, we will create ultrasound-sensitive fluorine nanoemulsions
loaded with PFC-modified ribonucleoproteins (RNPs) to enable imaging-guided gene editing in kidney tissue.
Success of this research will advance the use of PFCs as a new molecular motif to control protein and DNA
assembly, and the methods developed applied to discover new reagents for intracellular transduction of
fluorinated biomacromolecules. Ultimately, advancing knowledge on how organofluorine compounds interact
with proteins and DNA, and its effects on cells, will guide the rational design of new PFC enabled technologies
with desirable functional properties for drug discovery and nanomedicine applications.
项目摘要
有机氟化合物具有吸引人的化学、药理学和生物学性质,
使他们能够在生物制药和生物材料的设计中实现范式转变。的
将氟原子引入氨基酸和核酸开辟了一个广阔的新化学景观,
其改变肽、蛋白质和DNA的折叠、稳定性、寡聚化倾向和生物活性。
然而,尽管显示出赋予有利的性质,但将氟添加到生物支架中的影响是不利的。
很少预测。此外,越来越多的证据表明,全氟化合物混杂吸附到
细胞的许多基本组成部分--包括脂质、蛋白质和DNA --引发了大量的
生物效应PI实验室最近发现的这些效应之一是有机氟分子能够
将蛋白质和DNA组装成氟微区,所述氟微区相分离成氟化液体,
使生物制剂变性PI最近利用这些新出现的特性来实现超声引导
三维组织中的氟化蛋白质。根据这些初步调查结果,
研究计划将从机理上探索有机氟化合物如何影响结构,
吸附蛋白质和DNA的功能,并使用这些见解来指导新的超分子设计
组装生物材料。我们的总体假设是,有机氟化合物非共价吸附
蛋白质和DNA直接分离成富氟相,这反过来又改变了它们的寡聚体,
组装、细胞命运和生物活性。为了验证这一论断,我们将扩大我们的全氟化合物(PFC)
文库包括具有碱性/酸性官能团和杂环部分的多种分子。我们将使用
该文库建立了控制PFC吸附蛋白质能力的结构-活性关系,以及
研究PFC络合如何改变蛋白质细胞摄取、细胞内运输和生物活性。在
同时,我们将使用该库研究介导PFC-DNA相互作用的分子机制,并检查
PFC复合如何改变暴露细胞中的DNA稳定性和代谢稳态。这些研究一起
将建立一个全面的机制,了解PFC如何与蛋白质和DNA相互作用,并将
允许我们合理设计氟生物技术,利用不寻常的组装现象和阶段-
分离的特性。作为一个例子,我们将创建超声波敏感的氟纳米乳液
装载PFC修饰的核糖核蛋白(RNP),以实现肾脏组织中的成像引导基因编辑。
这一研究的成功将推动PFC作为一种新的分子基序来控制蛋白质和DNA的应用
组装,以及开发的方法应用于发现用于细胞内转导的新试剂,
氟化生物大分子。最终,推进有机氟化合物如何相互作用的知识
与蛋白质和DNA的关系,以及它对细胞的影响,将指导新的PFC技术的合理设计
具有药物发现和纳米医学应用所需的功能性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Hammond Medina其他文献
Scott Hammond Medina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Hammond Medina', 18)}}的其他基金
Biomimetic Peptide Aerosols for Rapid Clearance of Pulmonary MDR Tuberculosis
用于快速清除耐多药肺结核的仿生肽气雾剂
- 批准号:
10344596 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
Biomimetic Peptide Aerosols for Rapid Clearance of Pulmonary MDR Tuberculosis
用于快速清除耐多药肺结核的仿生肽气雾剂
- 批准号:
10530676 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
- 批准号:
10275995 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
- 批准号:
10651637 - 财政年份:2021
- 资助金额:
$ 39.22万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 39.22万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 39.22万 - 项目类别:














{{item.name}}会员




