Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
基本信息
- 批准号:10651637
- 负责人:
- 金额:$ 38.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdsorptionAmino AcidsBiocompatible MaterialsBiologicalBiological ProductsBiotechnologyCellsChemicalsDNADNA MaintenanceFluorineGenesHomeostasisKidneyKnowledgeLibrariesLipidsLiquid substanceMediatingMetabolicMethodsMolecularNucleic AcidsPeptidesPhasePlayPropertyProteinsReagentResearchRibonucleoproteinsStructureStructure-Activity RelationshipTechnologyTestingTissuesbiomacromoleculedesigndrug discoveryimage guidedinsightnanoemulsionnanomedicinenovel therapeuticspharmacologicphysical propertyprogramsrational designscaffoldsuccesstraffickingultrasounduptake
项目摘要
PROJECT SUMMARY
Organofluorine compounds possess attractive chemical, pharmacological and biological properties that have
allowed them to make paradigm shifts in the design of biopharmaceuticals and biologic materials. The
introduction of fluorine atoms into amino acids and nucleic acids opens a vast new chemical landscape with
which to alter the folding, stability, oligomerization propensity and bioactivity of peptides, proteins and DNA.
However, although shown to impart favorable properties, the impact of adding fluorine into biologic scaffolds is
rarely predictable. Further, increasing evidence suggests perfluorinated compounds promiscuously adsorb to
many of the fundamental building blocks of cells - including lipids, proteins and DNA - to elicit a plurality of
bioeffects. One of these effects, recently discovered by the PI’s lab, is the ability of organofluorine molecules to
direct protein and DNA assembly into fluorous microdomains that phase separate into fluorinated liquids without
denaturing the biologic. The PI has recently exploited these emergent properties to enable ultrasound-guidance
of fluorinated proteins in three-dimensional tissues. Building upon these preliminary findings, the proposed
research program will mechanistically explore how organofluorine compounds influence the structure and
function of adsorbed proteins and DNA and use these insights to guide the design of new supramolecular
assembled biomaterials. Our overarching hypothesis is that organofluorine compounds non-covalently adsorb
to proteins and DNA to direct their separation into fluorine-rich phases, which in turn alters their oligomeric
assembly, cellular fate and bioactivity. To test this assertion, we will expand our perfluorinated compound (PFC)
library to include a diversity of molecules with basic/acidic functionalities and heterocyclic moieties. We will use
this library to establish structure-activity relationships governing the ability of PFCs to adsorb proteins, and
investigate how PFC complexation alters protein cellular uptake, intracellular trafficking and bioactivity. In
parallel, we will use this library to study the molecular mechanisms mediating PFC-DNA interactions and examine
how PFC complexation alters DNA stability and metabolic homeostasis in exposed cells. Together, these studies
will establish a comprehensive mechanistic understanding of how PFCs interact with proteins and DNA and will
allow us to rationally design fluorous biotechnologies that exploit the unusual assembly phenomenon and phase-
separation properties that emerge. As an example, we will create ultrasound-sensitive fluorine nanoemulsions
loaded with PFC-modified ribonucleoproteins (RNPs) to enable imaging-guided gene editing in kidney tissue.
Success of this research will advance the use of PFCs as a new molecular motif to control protein and DNA
assembly, and the methods developed applied to discover new reagents for intracellular transduction of
fluorinated biomacromolecules. Ultimately, advancing knowledge on how organofluorine compounds interact
with proteins and DNA, and its effects on cells, will guide the rational design of new PFC enabled technologies
with desirable functional properties for drug discovery and nanomedicine applications.
项目摘要
有机氟化合物具有吸引人的化学、药理学和生物学性质,
使他们能够在生物制药和生物材料的设计中实现范式转变。的
将氟原子引入氨基酸和核酸开辟了一个广阔的新化学景观,
其改变肽、蛋白质和DNA的折叠、稳定性、寡聚化倾向和生物活性。
然而,尽管显示出赋予有利的性质,但将氟添加到生物支架中的影响是不利的。
很少预测。此外,越来越多的证据表明,全氟化合物混杂吸附到
细胞的许多基本组成部分--包括脂质、蛋白质和DNA --引发了大量的
生物效应PI实验室最近发现的这些效应之一是有机氟分子能够
将蛋白质和DNA组装成氟微区,所述氟微区相分离成氟化液体,
使生物制剂变性PI最近利用这些新出现的特性来实现超声引导
三维组织中的氟化蛋白质。根据这些初步调查结果,
研究计划将从机理上探索有机氟化合物如何影响结构,
吸附蛋白质和DNA的功能,并使用这些见解来指导新的超分子设计
组装生物材料。我们的总体假设是,有机氟化合物非共价吸附
蛋白质和DNA直接分离成富氟相,这反过来又改变了它们的寡聚体,
组装、细胞命运和生物活性。为了验证这一论断,我们将扩大我们的全氟化合物(PFC)
文库包括具有碱性/酸性官能团和杂环部分的多种分子。我们将使用
该文库建立了控制PFC吸附蛋白质能力的结构-活性关系,以及
研究PFC络合如何改变蛋白质细胞摄取、细胞内运输和生物活性。在
同时,我们将使用该库研究介导PFC-DNA相互作用的分子机制,并检查
PFC复合如何改变暴露细胞中的DNA稳定性和代谢稳态。这些研究一起
将建立一个全面的机制,了解PFC如何与蛋白质和DNA相互作用,并将
允许我们合理设计氟生物技术,利用不寻常的组装现象和阶段-
分离的特性。作为一个例子,我们将创建超声波敏感的氟纳米乳液
装载PFC修饰的核糖核蛋白(RNP),以实现肾脏组织中的成像引导基因编辑。
这一研究的成功将推动PFC作为一种新的分子基序来控制蛋白质和DNA的应用
组装,以及开发的方法应用于发现用于细胞内转导的新试剂,
氟化生物大分子。最终,推进有机氟化合物如何相互作用的知识
与蛋白质和DNA的关系,以及它对细胞的影响,将指导新PFC技术的合理设计。
具有药物发现和纳米医学应用所需的功能性质。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids.
合成结肠粘液使模块化微生物类器官的开发成为可能。
- DOI:10.21203/rs.3.rs-3164407/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Medina,Scott;Miller,Michael
- 通讯作者:Miller,Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Hammond Medina其他文献
Scott Hammond Medina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Hammond Medina', 18)}}的其他基金
Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
- 批准号:
10439828 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Biomimetic Peptide Aerosols for Rapid Clearance of Pulmonary MDR Tuberculosis
用于快速清除耐多药肺结核的仿生肽气雾剂
- 批准号:
10344596 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Biomimetic Peptide Aerosols for Rapid Clearance of Pulmonary MDR Tuberculosis
用于快速清除耐多药肺结核的仿生肽气雾剂
- 批准号:
10530676 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Understanding and controlling the cellular fate of fluorine-modified biologics
了解和控制氟改性生物制品的细胞命运
- 批准号:
10275995 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for Scientific Research (S)