CoAI: Cost-Aware Artificial Intelligence for Efficient Prehospital Diagnosis of Trauma Patients
CoAI:具有成本意识的人工智能,可对创伤患者进行高效的院前诊断
基本信息
- 批准号:10440236
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-16 至 2023-06-15
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptedAdverse eventAlgorithmsAreaArtificial IntelligenceAwarenessBenchmarkingBlood Coagulation DisordersBlood PressureBudgetsCategoriesCessation of lifeClinicalClinical DataComaComputer softwareComputerized Medical RecordConsensusCost AnalysisCost SavingsDataData SetDecision MakingDecision TreesDiagnosisEvaluationExpert SystemsFeedbackFeelingFutureHealth PersonnelHealthcareHospitalsInjuryIntelligenceInterviewLearningLiteratureMachine LearningMeasuresMedical RecordsMedicineMethodsModelingOperative Surgical ProceduresParamedical PersonnelPatient riskPatientsPerformanceProcessPsychological reinforcementPublishingRadiology SpecialtyReadingResearchRiskRunningSavingsScienceSurveysSystemTechniquesTestingTimeTraumaTrauma patientTriageWorkaccurate diagnosisbaseclinical decision-makingclinical practicecomputer sciencecostdata registrydesignfallsflexibilityimpressionimprovedinsightinterestlarge datasetsmachine learning methodmedical specialtiesnovelopen sourcepatient registryprediction algorithmpredictive modelingpreventprototyperisk predictiontheoriestime usetrauma induced coagulopathyusability
项目摘要
Project Summary/Abstract
While artificial intelligence (AI) and machine learning (ML) are becoming widely used throughout medicine,
the analysis of the cost of an ML model’s predictions has been very limited. For example, an ML model may
accurately predict that a trauma patient will have acute traumatic coagulopathy (ATC), a bleeding disorder;
however, it may heavily rely on hard-to-measure patient features, like blood pressure or Glasgow Coma Score,
to do so. Standard ML techniques do not prioritize timely diagnosis, which is key to minimize death and injury.
This idea, which we refer to as cost-aware prediction, is a topic of recent interest in machine learning. However,
existing methods have substantial limitations, and their clinical impact has not been demonstrated. This
proposal will adopt recent advances in ML and explainable AI to 1) develop improved cost-aware prediction
techniques. 2) demonstrate their value using clinical data and 3) integrate them into the electronic medical
record. These methods will be applicable in many areas of science and medicine.
Aim 1. Develop a novel feature importance-based approach for cost-aware prediction. No existing approach
for cost-aware prediction consistently outperforms the others, and each has its own strengths and weaknesses.
This proposal uses recent discoveries in machine learning to design a new algorithm, CoAI, with new strengths
and fewer weaknesses. CoAI will substantially improve predictive performance, enable analysis on large
datasets, and flexibly work with any ML model. Preliminary results show that CoAI can outperform existing
methods. A new public benchmark for cost-aware prediction will be created and used to compare CoAI to
existing methods, and CoAI will be published as easy-to-use open-source software.
Aim 2. Evaluate CoAI’s potential for clinical time savings. CoAI’s ability to predict bleeding disorders will be
tested on an unprecedentedly detailed dataset that combines trauma hospital data with surveys of doctors and
paramedics. Comparing CoAI to the risk scores used in clinical practice will provide explicit estimates of how
much time CoAI can save and how many misdiagnoses it can prevent. In preliminary analysis with trauma
registry data, CoAI reduces prediction time and increases accuracy relative to an existing risk score.
Aim 3. Incorporate an interactive ML method into the medical record. CoAI will be integrated into the
electronic medical record (EMR), using feedback from professional paramedics. Quantitative estimates of time
and cost savings and subjective impressions will be gathered from paramedics, and open-ended interviews
will be conducted to assess their feelings about interactive machine learning methods like CoAI. These insights
will guide future research in interactive machine learning methods, as well as possible clinical work to study
CoAI’s impact on decision making in simulated trauma scenarios.
Successful completion of this project will allow faster, more accurate diagnosis of acute illness and
advance the state of the art in machine learning and artificial intelligence.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Erion Barner其他文献
Gabriel Erion Barner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Erion Barner', 18)}}的其他基金
CoAI: Cost-Aware Artificial Intelligence for Efficient Prehospital Diagnosis of Trauma Patients
CoAI:具有成本意识的人工智能,可对创伤患者进行高效的院前诊断
- 批准号:
10468920 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
CoAI: Cost-Aware Artificial Intelligence for Efficient Prehospital Diagnosis of Trauma Patients
CoAI:具有成本意识的人工智能,可对创伤患者进行高效的院前诊断
- 批准号:
9907467 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Research Fellowships