Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
基本信息
- 批准号:10441527
- 负责人:
- 金额:$ 59.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsApplication procedureArchivesAreaBreastCase StudyClinicalClinical DataClinical ResearchDataDetectionDevelopmentDiagnosticDiagnostic ImagingDiscipline of Nuclear MedicineDiseaseDoseEvaluationExplosionGeometryGoalsHalf-LifeImageImaging TechniquesInterventionInterventional ImagingInvestigationIsotopesLabelLungMethodsModelingModernizationMonitorMorphologic artifactsMotionOrganPatientsPerformancePhysicsPositronPositron-Emission TomographyProceduresPropertyProtocols documentationPsychological TransferPublic HealthRadiation Dose UnitResearchResolutionRunningScanningSystemTechniquesTestingTimeTracerTrainingTraining TechnicsValidationWorkaccurate diagnosisbasebreast imagingcellular imagingchimeric antigen receptor T cellsclinical efficacyclinically relevantconvolutional neural networkdata modelingdeep learningdenoisingdetectordisease diagnosisefficacy evaluationheart motionimprovedinnovationinstrumentationlearning networkloss of functionmolecular imagingneural networkneural network architecturenovelnovel strategiespersonalized medicineproton therapyradiotracerreconstructionresponsesolid statestatisticssuccesstomographytooltreatment response
项目摘要
Project Summary
Clinical and research applications of the PET imaging are rapidly expanding from ever improving diagnostic
and treatment assessment applications to guidance of personalized treatments, ultra-low dose imaging, and
even interventional imaging procedures. Supporting these developments, reconstruction tools that are able to
reliably handle both typical and (ultra-)low count situations, imperfect data, and data from specialized imaging
geometries, with fast (near real-time) reconstruction performance are of crucial importance. The overall goal of
this project is to develop and investigate robust and efficacious Deep Learning (DL) reconstruction approaches
addressing these needs. A unique and innovative feature of the proposed approaches (compared to alternative
DL applications) is the utilization of list-mode data histogrammed into a very efficient histo-image format. TOF
data partitioned into the histo-image format are characterized by strong local properties, thus perfectly fitting
convolutional neural network formalism and making DL training and reconstruction directly from realistic clinical
data (in size and character) highly feasible and practical.
The clinical utility of PET systems has significantly improved over the years thanks to advances in
instrumentation, data corrections, and reconstruction approaches. Nevertheless, full utilization of their potential
through robust and fast quantitative reconstruction remains a challenge especially for the cases of very low count
data, such as in low-count temporal (motion and dynamic) frames, delayed studies, longitudinal low-dose
studies, and studies using new isotopes with long half-life and low positron fraction rates (e.g. in 89Zr-labeled
CAR-T cell imaging), as well as in specialized PET systems with partial angular coverage, for which exact,
artifact-free, reconstruction does not exist. These are the situations for which the developed DL approaches
promise great potential due to the demonstrated success of the DL networks to be trained for imperfect and very
low count data without reliance on accurate data models. Furthermore, pre-trained networks can provide ultra-
fast, near real-time, performance in practical use.
Specific Aim 1 will develop tools for DL PET reconstruction using histo-image partitioning along with
procedures for training of the proposed DL approaches, including novel approaches advancing the state-of-the-
art of DL reconstruction directly from acquired PET data. Specific Aim 2 is directed towards study and evaluation
of the performance of the investigated DL approaches for whole-body and long axial FOV scanner data for the
wide range of counts from applications such as typical FDG, low dose, delayed, low activity isotope scans, and
ultra-short frames in motion correction and dynamic studies. Specific Aim 3 will develop and apply motion
correction protocols involving the proposed DL reconstruction tools and test and study their efficacy for clinically
realistic situations involving non-rigid lung and heart motions. And finally, Specific Aim 4 is dedicated to an
application and study of the developed DL approaches to specialized PET systems with partial angular coverage.
1
项目摘要
PET成像的临床和研究应用正从不断改进的诊断和诊断方法迅速扩展。
和治疗评估应用程序,以指导个性化治疗,超低剂量成像,
甚至是介入成像程序。支持这些发展,重建工具,能够
可靠地处理典型和(超)低计数情况、不完美数据以及来自专业成像的数据
具有快速(近实时)重建性能的几何形状是至关重要的。的总目标
该项目旨在开发和研究强大而有效的深度学习(DL)重建方法
满足这些需求。拟议办法的一个独特和创新的特点(与替代办法相比)
DL应用程序)是利用列表模式数据将其直方图化为非常高效的直方图格式。TOF
划分成直方图格式的数据具有很强的局部特性,因此完全拟合
卷积神经网络的形式化,使DL训练和重建直接从现实的临床
数据(在大小和字符)高度可行和实用。
PET系统的临床效用多年来由于以下方面的进步而显著提高:
仪器、数据校正和重建方法。然而,充分利用其潜力
通过稳健和快速的定量重建仍然是一个挑战,特别是对于非常低计数的情况下,
数据,如低计数时间(运动和动态)帧、延迟研究、纵向低剂量
研究,以及使用具有长半衰期和低正电子分数率的新同位素的研究(例如,在89 Zr标记的
CAR-T细胞成像),以及在具有部分角度覆盖的专用PET系统中,
无伪影,重建不存在。这些都是开发的DL方法的情况
由于DL网络的成功证明,它具有巨大的潜力,可以训练不完美和非常
低计数数据,无需依赖准确的数据模型。此外,预先训练的网络可以提供超
快速、接近实时,在实际应用中具有很好的性能。
Specific Aim 1将开发使用组织图像分割沿着进行DL PET重建的工具,
拟议的DL方法的培训程序,包括推进国家的新方法,
直接从采集的PET数据进行DL重建的技术。具体目标2是针对研究和评价
研究的DL方法用于全身和长轴FOV扫描仪数据的性能,
广泛的计数应用,如典型的FDG,低剂量,延迟,低活性同位素扫描,
运动校正和动态研究中的超短帧。具体目标3将开发和应用运动
校正协议涉及拟议的DL重建工具,并测试和研究其临床疗效
涉及非刚性肺和心脏运动的现实情况。最后,具体目标4致力于
开发的DL方法在部分角度覆盖的专用PET系统中的应用和研究。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMUEL MATEJ其他文献
SAMUEL MATEJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMUEL MATEJ', 18)}}的其他基金
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10276952 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10610950 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7653119 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6625757 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6875217 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
8235078 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
8054849 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7809575 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6478531 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6736231 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant