Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
基本信息
- 批准号:10610950
- 负责人:
- 金额:$ 59.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsApplication procedureArchivesAreaBreastCase StudyClinicalClinical DataDataDedicationsDetectionDevelopmentDiagnosticDiagnostic ImagingDiscipline of Nuclear MedicineDiseaseDoseEvaluationExplosionGeometryGoalsHalf-LifeImageImaging TechniquesInterventionInterventional ImagingInvestigationIsotopesLabelLungMethodsModelingModernizationMonitorMorphologic artifactsMotionOrganPatientsPerformancePhysicsPositronPositron-Emission TomographyProceduresPropertyProtocols documentationPsychological TransferPublic HealthRadiation Dose UnitResearchResolutionRunningScanningSystemTechniquesTestingTimeTracerTrainingTraining TechnicsValidationWorkaccurate diagnosisassessment applicationbreast imagingcellular imagingchimeric antigen receptor T cellsclinical efficacyclinically relevantconvolutional neural networkdata modelingdeep learningdenoisingdetectordisease diagnosisefficacy evaluationheart motionimprovedinnovationinstrumentationlearning networkloss of functionmolecular imagingneural networkneural network architecturenovelnovel strategiespersonalized medicineproton therapyradiotracerreconstructionresponsesolid statestatisticssuccesstomographytooltreatment response
项目摘要
Project Summary
Clinical and research applications of the PET imaging are rapidly expanding from ever improving diagnostic
and treatment assessment applications to guidance of personalized treatments, ultra-low dose imaging, and
even interventional imaging procedures. Supporting these developments, reconstruction tools that are able to
reliably handle both typical and (ultra-)low count situations, imperfect data, and data from specialized imaging
geometries, with fast (near real-time) reconstruction performance are of crucial importance. The overall goal of
this project is to develop and investigate robust and efficacious Deep Learning (DL) reconstruction approaches
addressing these needs. A unique and innovative feature of the proposed approaches (compared to alternative
DL applications) is the utilization of list-mode data histogrammed into a very efficient histo-image format. TOF
data partitioned into the histo-image format are characterized by strong local properties, thus perfectly fitting
convolutional neural network formalism and making DL training and reconstruction directly from realistic clinical
data (in size and character) highly feasible and practical.
The clinical utility of PET systems has significantly improved over the years thanks to advances in
instrumentation, data corrections, and reconstruction approaches. Nevertheless, full utilization of their potential
through robust and fast quantitative reconstruction remains a challenge especially for the cases of very low count
data, such as in low-count temporal (motion and dynamic) frames, delayed studies, longitudinal low-dose
studies, and studies using new isotopes with long half-life and low positron fraction rates (e.g. in 89Zr-labeled
CAR-T cell imaging), as well as in specialized PET systems with partial angular coverage, for which exact,
artifact-free, reconstruction does not exist. These are the situations for which the developed DL approaches
promise great potential due to the demonstrated success of the DL networks to be trained for imperfect and very
low count data without reliance on accurate data models. Furthermore, pre-trained networks can provide ultra-
fast, near real-time, performance in practical use.
Specific Aim 1 will develop tools for DL PET reconstruction using histo-image partitioning along with
procedures for training of the proposed DL approaches, including novel approaches advancing the state-of-the-
art of DL reconstruction directly from acquired PET data. Specific Aim 2 is directed towards study and evaluation
of the performance of the investigated DL approaches for whole-body and long axial FOV scanner data for the
wide range of counts from applications such as typical FDG, low dose, delayed, low activity isotope scans, and
ultra-short frames in motion correction and dynamic studies. Specific Aim 3 will develop and apply motion
correction protocols involving the proposed DL reconstruction tools and test and study their efficacy for clinically
realistic situations involving non-rigid lung and heart motions. And finally, Specific Aim 4 is dedicated to an
application and study of the developed DL approaches to specialized PET systems with partial angular coverage.
1
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMUEL MATEJ其他文献
SAMUEL MATEJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMUEL MATEJ', 18)}}的其他基金
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10441527 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10276952 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7653119 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6625757 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6875217 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
8235078 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
8054849 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7809575 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6478531 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6736231 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.85万 - 项目类别:
Research Grant