Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
基本信息
- 批准号:10443151
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-20 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AreaAtherosclerosisBiosensorBlood VesselsBlood flowCRISPR interferenceCRISPR-mediated transcriptional activationCarotid ArteriesCell Fate ControlCell physiologyCellsChIP-seqChemicalsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCouplingEndothelial CellsEngineeringEpigenetic ProcessFluorescence Resonance Energy TransferFocused UltrasoundFunctional disorderGene TargetingGenesGeneticGenomeGenomic SegmentGenomicsGuide RNAHistonesHomeostasisImageIn VitroIndividualInflammationIntravenousInvestigationKnowledgeLaboratoriesLaminsLigationLinkLocationMagnetic ResonanceModelingMonitorMusNatureNuclearNuclear EnvelopePatternPlayPreventionProteinsRegulationRoleSeriesSiteSystemTestingTherapeuticThoracic aortaTimeTissuesTranscriptional RegulationValidationVascular DiseasesVascular Endothelial CellViralaortic archatherogenesisatheroprotectivebasecellular imagingchromatin remodelingemerinendonucleaseepigenetic regulationepigenomeexperimental studyfunctional outcomesgenomic locusgenomic profileshistone modificationin vivoinhibitorloss of functionmechanical signalmouse modelmultiple omicsnovelrecruitshear stresssingle-cell RNA sequencingsmall hairpin RNAtooltranscriptometranscriptomics
项目摘要
Endothelial cells (ECs) play a critical role in regulating vascular functions. We and others have demonstrated
that, through epigenetic and transcriptional regulations, laminar pulsatile shear stress (PS) induces athero-
protective genes to maintain EC homeostasis, whereas disturbed flow with oscillatory shear (OS) elevates
athero-prone genes to cause EC dysfunctions. We have performed single-cell RNA sequencing (scRNA-seq)
analyses to demonstrate that the transcriptomic effects of PS are distinct from those of OS. In addition, we have
shown that PS caused enrichments of histone active mark (H3K27ac) at genes related to EC homeostasis and
histone repressing mark (H3K9me3) at genes related to inflammation. We also demonstrated that the PS-
induced H3K9me3 is dependent on the nuclear envelop proteins lamin/emerin. These findings have led to our
hypothesis that PS and OS modulate EC functions through the coupling of lamin/emerin and chromatin to recruit
histone modifiers, thus leading to differential changes in histone epigenetics and the associated genomic and
transcriptomic regulations, and hence the opposite functional outcomes. The couplings between lamin/emerin
and chromatin/genome can transduce the mechanical signals from physical space into genome space for gene
and cell fate regulations. In order to test our hypothesis, we will conduct ChIP-seq to identify the lamin/emerin
associated genome regions (LEAGRs) under PS and OS, and determine the LEAGR-associated histone
modifications (i.e., epigenome). To visualize the differential flow-modulations of the dynamic interaction between
LEAGRs and lamin/emerin in single live cells, we will employ endonuclease-deficient Cas9 (dCas9) together
with small guide RNAs (sgRNAs) and engineered biosensors to track the dynamics of the histone profiles of
these genomic loci, particularly those related to EC homeostasis or inflammation. We will then determine the
roles of the locus-specific epigenetic profiles in regulating the transcriptome and cellular functions under different
flows. We will conduct studies in vivo on aorta arch (OS) and thoracic aorta (PS) in mice to validate our in vitro
results, and assess their impacts on atherogenesis by using atherosclerotic mouse models. Specifically, the MR
(magnetic resonance)-guided FUS (focused ultrasound) (MRg-FUS) system will be used to remotely and
noninvasively activate the inducible shRNA and CRISPRa/i (CRISPR activation or interference) systems to
manipulate lamin/emerin and locus-specific histone epigenetics at local tissue areas of mouse with partially
ligated carotid arteries to examine their functional roles in vivo. Accordingly, three specific aims are proposed: 1)
In vitro investigation of lamin/emerin and EC epigenome/transcriptome under different flows, 2) Imaging of locus-
specific epigenetic and chromatin remodeling in single live ECs, 3) In vivo examination and validation of the
epigenome/transcriptome regulation in mouse atherosclerosis models. With the integrated multi-omics, single-
cell imaging, and noninvasive locus-specific modulation, we will be able to identify and mitigate the key molecules
to develop mechanomedicine for vascular diseases.
内皮细胞在调节血管功能中起着重要作用。我们和其他人已经证明了
通过表观遗传和转录调控,层流脉动剪切应力(PS)诱导动脉粥样硬化,
保护基因,以维持EC稳态,而振荡剪切(OS)干扰流提高
动脉粥样硬化倾向基因导致EC功能障碍。我们进行了单细胞RNA测序(scRNA-seq)
分析表明,PS的转录组学效应与OS的转录组学效应不同。此外,我们还
表明PS引起EC稳态相关基因组蛋白活性标记(H3 K27 ac)的富集,
组蛋白抑制标记(H3 K9 me 3)在炎症相关基因。我们还证明了PS-
诱导的H3 K9 me 3依赖于核膜蛋白lamin/emerin。这些发现使我们
假设PS和OS通过核纤层蛋白/核突蛋白和染色质偶联来募集细胞,
组蛋白修饰剂,从而导致组蛋白表观遗传学和相关的基因组和
转录调控,因此相反的功能结果。lamin/emerin之间的耦合
而染色质/基因组可以将机械信号从物理空间传递到基因组空间,
和细胞命运的规定。为了验证我们的假设,我们将进行ChIP-seq以鉴定核纤层蛋白/核突蛋白。
PS和OS下的相关基因组区域(LEAGR),并确定LEAGR相关组蛋白
修改(即,表观基因组)。为了可视化不同的流动调制之间的动态相互作用,
在单个活细胞中,我们将使用内切核酸酶缺陷型Cas9(dCas 9)
用小向导RNA(sgRNA)和工程生物传感器来跟踪组蛋白谱的动态,
这些基因组位点,特别是那些与EC稳态或炎症相关的基因组位点。然后我们将确定
基因座特异性表观遗传谱在调节转录组和细胞功能中的作用,
流动。我们将在小鼠主动脉弓(OS)和胸主动脉(PS)上进行体内研究以验证我们的体外研究。
结果,并通过使用动脉粥样硬化小鼠模型评估它们对动脉粥样硬化形成的影响。具体来说,MR
(磁共振)引导FUS(聚焦超声)(MRg-FUS)系统将用于远程和
非侵入性激活诱导型shRNA和CRISPR a/i(CRISPR激活或干扰)系统,
在小鼠的局部组织区域操纵核纤层蛋白/核突蛋白和基因座特异性组蛋白表观遗传学,
结扎颈动脉以检查它们在体内的功能作用。因此,提出了三个具体目标:
在不同流动下的核纤层蛋白/突蛋白和EC表观基因组/转录组的体外研究,2)基因座成像,
在单个活EC中的特异性表观遗传和染色质重塑,3)在单个活EC中的特异性表观遗传和染色质重塑的体内检查和验证,
小鼠动脉粥样硬化模型中的表观基因组/转录组调控。随着集成多组学,单-
细胞成像和非侵入性位点特异性调制,我们将能够识别和减轻关键分子
来发展血管疾病的机械医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 79万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 79万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9111932 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
10448495 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
- 批准号:
10537602 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Targeted multimodal stimuli-responsive nanogels for atherosclerosis imaging and therapy
用于动脉粥样硬化成像和治疗的靶向多模式刺激响应纳米凝胶
- 批准号:
2880683 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Studentship
Body composition and atherosclerosis-related biomarkers in women with endometriosis
子宫内膜异位症女性的身体成分和动脉粥样硬化相关生物标志物
- 批准号:
23K15842 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
- 批准号:
10570469 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Alcohol Regulation of Endothelial Plasticity in Atherosclerosis
酒精对动脉粥样硬化内皮可塑性的调节
- 批准号:
10585070 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
The role of extracellular vesicle-associated MicroRNAs in HIV-associated atherosclerosis
细胞外囊泡相关 MicroRNA 在 HIV 相关动脉粥样硬化中的作用
- 批准号:
10619831 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS - TOPMED
动脉粥样硬化的多种族研究 - TOPMED
- 批准号:
10974007 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:














{{item.name}}会员




