Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
基本信息
- 批准号:8615815
- 负责人:
- 金额:$ 61.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-20 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:Adherens JunctionAtherosclerosisBiochemicalBiological AssayBiosensorBloodBlood VesselsCalcium ionCardiovascular DiseasesCell Adhesion MoleculesCell CountCell NucleusCell membraneCellsCharacteristicsCodeColorCouplingCytosolDepositionEffectivenessElementsEndothelial CellsEventFeedbackFluorescenceFluorescence Resonance Energy TransferFunctional disorderGene ExpressionGene Expression RegulationHomeostasisImageImmuneIndiumIndividualInflammatoryKnowledgeLeadLibrariesLifeLow-Density LipoproteinsMapsMeasuresMechanicsMediatingMembraneMembrane MicrodomainsMicroscopyModelingMolecularMonitorMonocyte Chemoattractant Protein-1MutationOutcomePathway interactionsPermeabilityPhenotypePhysiologicalPlayProcessProductionProteinsRecruitment ActivityRegulationResolutionRoleSensitivity and SpecificitySignal TransductionSiteSurfaceTRP channelTimeTreesVascular Endothelial Celladherent junctionatherogenesisatheroprotectivebasecellular imagingchemokinedesigndirected evolutiondisorder preventionextracellularhemodynamicsin vivomacromoleculemeetingsmonocytemonolayerneuronal cell bodynovelpublic health relevanceresponsescreeningsensorshear stressspatiotemporal
项目摘要
Project Summary
Responses of vascular endothelial cells (ECs) to hemodynamic forces play significant roles in the regulation of
vascular homeostasis. In vivo studies have shown that the ECs in branch points of the arterial tree are
exposing to disturbed flow (DF) and express pro-inflammatory and pro-atherogenic phenotypes. In contrast,
ECs in the straight part of the arterial tree are exposed to laminar shear flow (LF) and are generally spared
from atherosclerosis. We hypothesize that atheroprone and atheroprotective flows activate ECs with differential
spatiotemporal characteristics at subcellular levels to trigger different cellular responses. We propose to use
genetically encoded biosensors based on fluorescent proteins (FPs) and fluorescence resonance energy
transfer (FRET) to visualize molecular activities in individual live cells with unprecedented spatiotemporal
resolution. We will study the signals relays across the plasma membrane, between neighboring cells, as well
as intracellular cytosol-nuclei transitions to understand the temporal and spatial dynamics of
mechanotransduction. In order to achieve effectiveness of the biosensor studies, we will incorporate a new
mOrange2-mCherry FRET pair together with the CFP-YFP pair to simultaneously monitor two different
molecular events in the same live cell. We will further integrate fluorescence lifetime imaging microscopy
(FLIM) to simultaneously visualize multiple molecular signals across the plasma membrane, between cells, and
inside the cell body, with the use of correlative FRET imaging microscopy (CFIM) developed in our labs. Three
specific aims are proposed: 1) To visualize the spatiotemporal mechanotransduction across the plasma
membrane: the extracellular shear stress (shear sensors) and intracellular molecular signals (transmembrane
TRPC6 and Src activities at different membrane microdomains) will be simultaneously monitored under
different flows to elucidate the roles of microdomains and molecular elements at the plasma membrane. 2) To
dissect the role of TRPC6 in the regulation of adherent junctions (AJs) under different flows: an ¿-catenin
biosensor will be used to monitor the mechanical tension at AJs and its interplays with extra-/inter-cellular
calcium ion concentrations. 3) To decipher the membrane-cytosol-nucleus ERK signaling for MCP-1 gene
regulation: differential flow-regulations of the cytosolic and nucleic ERK FRET biosensors will be determined to
reconstruct the spatiotemporal activation map of ERK in relation to MCP-1 gene expression. The results
obtained from these studies will allow us to generate spatiotemporal correlation maps of molecular
transductions/interactions and assess the roles of membrane microdomains/elements in regulating these
events. These findings will provide novel understanding of the spatiotemporal basis of the molecular and
mechanical mechanisms of atherosclerosis, a major pathophysiological event in cardiovascular diseases.
项目摘要
血管内皮细胞对血流动力学的反应在调节血管内皮细胞功能中起重要作用。
血管稳态体内研究表明,动脉树的分支点中的EC
暴露于扰动流(DF)并表达促炎和促动脉粥样硬化表型。与此相反,
动脉树直线部分的EC暴露于层流剪切流(LF),通常不会受到影响
动脉粥样硬化我们假设,atheroprone和动脉粥样硬化保护流激活内皮细胞,
在亚细胞水平的时空特征,以触发不同的细胞反应。我们建议使用
基于荧光蛋白(FP)和荧光共振能量的基因编码生物传感器
转移(FRET),以前所未有的时空可视化单个活细胞中的分子活动
分辨率我们也将研究跨质膜的信号传递,以及相邻细胞之间的信号传递
作为细胞内的胞质溶胶-核过渡,以了解时间和空间的动态,
机械传导为了实现生物传感器研究的有效性,我们将采用新的
mOrange 2-mCherry FRET对与CFP-YFP对一起用于同时监测两个不同的细胞周期。
在同一个活细胞中的分子事件。我们将进一步整合荧光寿命成像显微镜
(FLIM)以同时可视化细胞之间跨质膜的多个分子信号,以及
在细胞体内部,使用我们实验室开发的相关FRET成像显微镜(CCEH)。三
具体目标是:1)可视化跨等离子体的时空力学传导
膜:细胞外剪切应力(剪切传感器)和细胞内分子信号(跨膜
在不同的膜微区的TRPC 6和Src活性)将在下式中同时监测。
不同的流量,以阐明在质膜微区和分子元素的作用。2)到
分析TRPC 6在不同流动下粘附连接(AJs)调节中的作用:
生物传感器将用于监测AJs的机械张力及其与细胞外/细胞间的相互作用
钙离子浓度。3)MCP-1基因的膜-胞浆-核ERK信号转导
调节:细胞溶质和核酸ERK FRET生物传感器的差异流动调节将被确定,
重建ERK与MCP-1基因表达相关的时空激活图。结果
从这些研究中获得的信息将使我们能够生成分子的时空相关图,
转导/相互作用,并评估膜微区/元件在调节这些
事件这些发现将提供新的理解的时空基础的分子和
动脉粥样硬化是心血管疾病中的主要病理生理事件,其机械机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 61.85万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 61.85万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 61.85万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 61.85万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 61.85万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 61.85万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 61.85万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9111932 - 财政年份:2012
- 资助金额:
$ 61.85万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
10448495 - 财政年份:2012
- 资助金额:
$ 61.85万 - 项目类别:
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 61.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
- 批准号:
10537602 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Targeted multimodal stimuli-responsive nanogels for atherosclerosis imaging and therapy
用于动脉粥样硬化成像和治疗的靶向多模式刺激响应纳米凝胶
- 批准号:
2880683 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Studentship
Body composition and atherosclerosis-related biomarkers in women with endometriosis
子宫内膜异位症女性的身体成分和动脉粥样硬化相关生物标志物
- 批准号:
23K15842 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
- 批准号:
10570469 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Alcohol Regulation of Endothelial Plasticity in Atherosclerosis
酒精对动脉粥样硬化内皮可塑性的调节
- 批准号:
10585070 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
The role of extracellular vesicle-associated MicroRNAs in HIV-associated atherosclerosis
细胞外囊泡相关 MicroRNA 在 HIV 相关动脉粥样硬化中的作用
- 批准号:
10619831 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS - TOPMED
动脉粥样硬化的多种族研究 - TOPMED
- 批准号:
10974007 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别: