Mesh electronics for understanding space encoding in the amphibian brain

用于理解两栖动物大脑空间编码的网状电子器件

基本信息

  • 批准号:
    10446284
  • 负责人:
  • 金额:
    $ 65.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Many animals rely on spatial cognition for daily survival in order to recognize familiar places and process movements through or between locations. A variety of space-encoding cells in the hippocampus are important for spatial behaviors in mammals. However, neural encoding of space remains uncharacterized in other vertebrate taxa, including amphibians, whose simpler brain structure suggests alternative mechanisms of encoding space. The severe gap in our understanding of how the simple amphibian brain functions stems, in part, from difficulty in recording neural activity. The amphibian brain exhibits a greater degree of movement within the skull than other vertebrates, which could lead to an instability of electrophysiology recordings in moving animals using conventional implantable neural probes. Recently our labs have developed 1) a new form of electronics with tissue-like flexibility and stretchability for chronically stable neural recording with single-neuron resolution, and 2) cane toads as a model to study the neural basis of amphibian spatial behaviors. We propose to develop stretchable mesh electronic neural probes for in vivo electrophysiological recording of single neurons in the medial pallium, the proposed homolog of the mammalian hippocampus, in freely moving toads. We hypothesize that the medial pallium contains neurons that fire with spatial specificity, similar to place cells or head direction cells in the mammalian hippocampus, but with lower resolution and high correlation with specific environmental features (e.g., borders). We predict that single-cell activity of some neurons in the medial pallium, which is measured by mesh electronics in freely moving toads, will be correlated with spatial position within a behavioral arena, while neurons recorded from another region will not. Prior to recording from the medial pallium, we will establish mesh recordings in the optic tectum, a region easily accessible on the dorsal side of the brain which has been a target for previous electrophysiology studies. We will validate the results with rigorous statistical analyses and comparison of neural recording data with immunohistological imaging of brain slices. Understanding how amphibians learn and encode spatial information will reveal either alternative mechanisms for learning and encoding of spatial experiences or which paradigms are ancestral features of vertebrate brain function and how neurobiological principles of space coding might generalize across vertebrate taxa. Importantly, our approach will result in the development of chronically stable recording techniques in brains with large movements in the skull. This advance will be a valuable research tool for expanding the scope and possibility of electrophysiology studies in other animals. Successful completion of this project will allow us to obtain proof-of-principle data elucidating fundamental questions relating neuroanatomy to neuronal functions, which is crucial for future R01 applications. Furthermore, establishing a recording protocol in cane toads will allow for other aspects of neural function in amphibians, a research area that has thus far been limited due to technological constraints. In summary, our proposed research will help elucidate the core coding principles in the relatively simple amphibian brain and reveal how these principles for spatial encoding might generalize across vertebrate taxa.
项目摘要/摘要 许多动物的日常生存依赖于空间认知,以便识别熟悉的位置和处理运动 穿过或在不同地点之间。海马体中的各种空间编码细胞对空间行为很重要 在哺乳动物身上。然而,在其他脊椎动物分类中,空间的神经编码仍然没有特征,包括 两栖动物,其更简单的大脑结构暗示了编码空间的另一种机制。我们之间的严重差距 理解简单的两栖动物大脑是如何运作的,部分原因是记录神经活动的困难。 与其他脊椎动物相比,两栖动物的大脑在头骨内表现出更大的运动程度,这可能会导致 与使用传统可植入神经探头的运动动物的电生理学记录的不稳定性有关。 最近,我们的实验室开发了一种新形式的电子产品,具有组织一样的柔韧性和伸缩性 用单神经元分辨率进行长期稳定的神经记录;2)以甘蔗蟾蜍为模型研究神经 两栖动物空间行为的基础。我们建议开发可伸展的网状电子神经探针,用于活体 电生理记录大脑皮层内侧的单个神经元,这是哺乳动物的同源物 自由活动的蟾蜍体内的海马体。我们假设内侧大脑皮层含有在空间上放电的神经元。 特异性,类似于哺乳动物海马区的放置细胞或头部定向细胞,但分辨率和 与特定环境特征(例如边界)高度相关。我们预测某些细胞的单细胞活性 内侧大脑皮层的神经元,这是用网状电子学在自由活动的蟾蜍身上测量的,将与 在行为领域的空间位置,而从另一个区域记录的神经元不会。在录制之前 从大脑皮层内侧,我们将在视顶盖建立网状记录,这是一个在背部很容易到达的区域。 大脑的一侧,这是以前电生理学研究的目标。我们将通过以下方式验证结果 神经记录数据与脑片免疫组织成像的严格统计分析和比较。 了解两栖动物如何学习和编码空间信息将揭示 空间经验的学习和编码,或者哪些范例是脊椎动物大脑功能的祖先特征 以及空间编码的神经生物学原理如何在脊椎动物类别中推广。重要的是,我们的方法 这将导致在颅骨有较大运动的大脑中开发出长期稳定的记录技术。 这一进展将是一个有价值的研究工具,以扩大电生理研究的范围和可能性 其他动物。这个项目的成功完成将使我们能够获得原则证明数据,以阐明 与神经解剖学和神经元功能相关的基本问题,这对未来R01的应用至关重要。 此外,在甘蔗蟾蜍中建立记录协议将允许神经功能的其他方面 两栖动物,这是一个研究领域,到目前为止由于技术限制而受到限制。总而言之,我们的建议 研究将有助于阐明相对简单的两栖动物大脑中的核心编码原理,并揭示这些 空间编码的原理可能适用于脊椎动物类群。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Giocomo其他文献

Lisa Giocomo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Giocomo', 18)}}的其他基金

The Dynamics of Neural Representations for Distinct Spatial Contexts and Memory Episodes
不同空间背景和记忆片段的神经表征的动力学
  • 批准号:
    10620709
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
The Dynamics of Neural Representations for Distinct Spatial Contexts and Memory Episodes
不同空间背景和记忆片段的神经表征的动力学
  • 批准号:
    10435250
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
  • 批准号:
    10687148
  • 财政年份:
    2021
  • 资助金额:
    $ 65.26万
  • 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
  • 批准号:
    10490244
  • 财政年份:
    2021
  • 资助金额:
    $ 65.26万
  • 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
  • 批准号:
    10047735
  • 财政年份:
    2021
  • 资助金额:
    $ 65.26万
  • 项目类别:
Project 2
项目2
  • 批准号:
    9358982
  • 财政年份:
    2017
  • 资助金额:
    $ 65.26万
  • 项目类别:
Brain-wide circuits for drug-induced changes to cognition
药物引起的认知变化的全脑回路
  • 批准号:
    10494006
  • 财政年份:
    2017
  • 资助金额:
    $ 65.26万
  • 项目类别:
The Ionic Basis of Spatial Codes in Medial Entorhinal Cortex
内侧内嗅皮层空间编码的离子基础
  • 批准号:
    9321962
  • 财政年份:
    2015
  • 资助金额:
    $ 65.26万
  • 项目类别:
Spatial Codes Across the Medial Entorhinal Cortex for Memory and Navigation
内侧内嗅皮层用于记忆和导航的空间代码
  • 批准号:
    10120754
  • 财政年份:
    2015
  • 资助金额:
    $ 65.26万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 65.26万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 65.26万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了