Mesh electronics for understanding space encoding in the amphibian brain
用于理解两栖动物大脑空间编码的网状电子器件
基本信息
- 批准号:10446284
- 负责人:
- 金额:$ 65.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAffectAmphibiaAnimalsAreaBehavioralBrainBrain imagingBrain regionCanesCellsChronicCodeCognitionCommunitiesControl AnimalDataDevelopmentDorsalElectric ConductivityElectrodesElectronicsElectrophysiology (science)ExhibitsFinite Element AnalysisFire - disastersFutureHeadHippocampus (Brain)Homologous GeneHydrogelsImplantIndividualInjectionsKnowledgeLeadLearningLocationMammalsMeasuresMechanicsMedialModelingMorphologyMotionMovementMusNeuroanatomyNeurobiologyNeuronsNeurophysiology - biologic functionNeurosciencesOutputPhylogenyPositioning AttributeProcessPropertyProtocols documentationResearchResolutionRetinaRoleSideSliceSorting - Cell MovementSpatial BehaviorSpecificitySpectrum AnalysisStatistical Data InterpretationStretchingStructureTechniquesTestingThickTimeTissuesVertebratesWeightWorkclinically significantcognitive functioncraniumdesignelectric impedanceexperienceflexibilityin vivoinsightlight weightmechanical propertiesmillisecondneural implantneural networkprinted circuit boardrelating to nervous systemstemsubmicronsuperior colliculus Corpora quadrigeminatoadtoolwireless
项目摘要
PROJECT SUMMARY/ABSTRACT
Many animals rely on spatial cognition for daily survival in order to recognize familiar places and process movements
through or between locations. A variety of space-encoding cells in the hippocampus are important for spatial behaviors
in mammals. However, neural encoding of space remains uncharacterized in other vertebrate taxa, including
amphibians, whose simpler brain structure suggests alternative mechanisms of encoding space. The severe gap in our
understanding of how the simple amphibian brain functions stems, in part, from difficulty in recording neural activity.
The amphibian brain exhibits a greater degree of movement within the skull than other vertebrates, which could lead
to an instability of electrophysiology recordings in moving animals using conventional implantable neural probes.
Recently our labs have developed 1) a new form of electronics with tissue-like flexibility and stretchability for
chronically stable neural recording with single-neuron resolution, and 2) cane toads as a model to study the neural
basis of amphibian spatial behaviors. We propose to develop stretchable mesh electronic neural probes for in vivo
electrophysiological recording of single neurons in the medial pallium, the proposed homolog of the mammalian
hippocampus, in freely moving toads. We hypothesize that the medial pallium contains neurons that fire with spatial
specificity, similar to place cells or head direction cells in the mammalian hippocampus, but with lower resolution and
high correlation with specific environmental features (e.g., borders). We predict that single-cell activity of some
neurons in the medial pallium, which is measured by mesh electronics in freely moving toads, will be correlated with
spatial position within a behavioral arena, while neurons recorded from another region will not. Prior to recording
from the medial pallium, we will establish mesh recordings in the optic tectum, a region easily accessible on the dorsal
side of the brain which has been a target for previous electrophysiology studies. We will validate the results with
rigorous statistical analyses and comparison of neural recording data with immunohistological imaging of brain slices.
Understanding how amphibians learn and encode spatial information will reveal either alternative mechanisms for
learning and encoding of spatial experiences or which paradigms are ancestral features of vertebrate brain function
and how neurobiological principles of space coding might generalize across vertebrate taxa. Importantly, our approach
will result in the development of chronically stable recording techniques in brains with large movements in the skull.
This advance will be a valuable research tool for expanding the scope and possibility of electrophysiology studies in
other animals. Successful completion of this project will allow us to obtain proof-of-principle data elucidating
fundamental questions relating neuroanatomy to neuronal functions, which is crucial for future R01 applications.
Furthermore, establishing a recording protocol in cane toads will allow for other aspects of neural function in
amphibians, a research area that has thus far been limited due to technological constraints. In summary, our proposed
research will help elucidate the core coding principles in the relatively simple amphibian brain and reveal how these
principles for spatial encoding might generalize across vertebrate taxa.
项目总结/摘要
许多动物依靠空间认知来进行日常生存,以便识别熟悉的地方和处理动作
通过或在位置之间。海马中的各种空间编码细胞对空间行为非常重要
在哺乳动物中。然而,空间的神经编码在其他脊椎动物类群中仍然没有特征,包括
两栖动物,其简单的大脑结构表明编码空间的替代机制。在我们的严重差距
对简单的两栖动物大脑功能的理解,部分源于记录神经活动的困难。
两栖动物的大脑比其他脊椎动物在头骨内表现出更大程度的运动,
涉及使用常规可植入神经探针在运动动物中进行电生理学记录的不稳定性。
最近,我们的实验室开发了1)一种新形式的电子产品,具有组织般的灵活性和可拉伸性,
长期稳定的神经记录与单神经元分辨率,和2)甘蔗蟾蜍作为模型,以研究神经
两栖动物空间行为的基础。我们建议开发可拉伸网状电子神经探针,
内侧软腭单个神经元的电生理记录,
海马体,在自由移动的蟾蜍中。我们假设内侧软腭包含的神经元,
特异性,类似于哺乳动物海马中的定位细胞或头部方向细胞,但分辨率较低,
与特定环境特征的高度相关性(例如,边界)。我们预测,一些细胞的单细胞活性
在自由移动的蟾蜍中,通过网状电子设备测量的内侧腭中的神经元将与
在行为竞技场内的空间位置,而从另一个区域记录的神经元则不会。在记录之前
从内侧腭板,我们将建立网状记录在视顶盖,一个地区很容易达到的背
这是以前电生理学研究的目标。我们将验证结果,
神经记录数据与脑切片免疫组织学成像的严格统计分析和比较。
了解两栖动物如何学习和编码空间信息将揭示另一种机制,
空间经验的学习和编码,或者哪种范式是脊椎动物大脑功能的祖先特征
以及空间编码的神经生物学原理如何在脊椎动物分类群中推广。重要的是,我们的方法
这将导致在头骨大幅度运动的大脑中开发长期稳定的记录技术。
这一进展将是一个有价值的研究工具,扩大电生理学研究的范围和可能性,
其他动物。该项目的成功完成将使我们能够获得原理证明数据,
神经解剖学与神经功能相关的基本问题,这对R 01未来的应用至关重要。
此外,在甘蔗蟾蜍中建立一个记录协议将允许神经功能的其他方面,
两栖动物,一个研究领域,迄今为止一直受到限制,由于技术的限制。综上所述,我们的建议
这项研究将有助于阐明相对简单的两栖动物大脑中的核心编码原则,并揭示这些编码原则是如何在大脑中产生的。
空间编码的原理可能在脊椎动物分类群中普遍适用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Giocomo其他文献
Lisa Giocomo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Giocomo', 18)}}的其他基金
The Dynamics of Neural Representations for Distinct Spatial Contexts and Memory Episodes
不同空间背景和记忆片段的神经表征的动力学
- 批准号:
10620709 - 财政年份:2022
- 资助金额:
$ 65.26万 - 项目类别:
The Dynamics of Neural Representations for Distinct Spatial Contexts and Memory Episodes
不同空间背景和记忆片段的神经表征的动力学
- 批准号:
10435250 - 财政年份:2022
- 资助金额:
$ 65.26万 - 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
- 批准号:
10687148 - 财政年份:2021
- 资助金额:
$ 65.26万 - 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
- 批准号:
10490244 - 财政年份:2021
- 资助金额:
$ 65.26万 - 项目类别:
Research Project 4 - Internal state dynamics of navigation and memory
研究项目4 - 导航和记忆的内部状态动力学
- 批准号:
10047735 - 财政年份:2021
- 资助金额:
$ 65.26万 - 项目类别:
Brain-wide circuits for drug-induced changes to cognition
药物引起的认知变化的全脑回路
- 批准号:
10494006 - 财政年份:2017
- 资助金额:
$ 65.26万 - 项目类别:
The Ionic Basis of Spatial Codes in Medial Entorhinal Cortex
内侧内嗅皮层空间编码的离子基础
- 批准号:
9321962 - 财政年份:2015
- 资助金额:
$ 65.26万 - 项目类别:
Spatial Codes Across the Medial Entorhinal Cortex for Memory and Navigation
内侧内嗅皮层用于记忆和导航的空间代码
- 批准号:
10120754 - 财政年份:2015
- 资助金额:
$ 65.26万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 65.26万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 65.26万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 65.26万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 65.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 65.26万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 65.26万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 65.26万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 65.26万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 65.26万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 65.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




