Engineering T cells to Promote Islet Transplant
工程 T 细胞促进胰岛移植
基本信息
- 批准号:10446702
- 负责人:
- 金额:$ 78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsAcuteAutoimmune DiseasesBeta CellBlood GlucoseCD19 geneCancer PatientCell TherapyCell physiologyCellsCellular immunotherapyCessation of lifeChildhood LeukemiaChronic DiseaseClinical TrialsCoupledDataDiagnosisDipeptidyl PeptidasesDiseaseDisease remissionEffector CellEngineeringFoundationsFundingFutureGenesGoalsHLA AntigensHealthHumanImmuneImmune systemImmunosuppressionImmunosuppressive AgentsIn complete remissionIndividualInjectionsInstitutionInsulinInsulin-Dependent Diabetes MellitusInterleukin-2InvestmentsIslet CellIslets of Langerhans TransplantationLeadLeadershipMalignant NeoplasmsMediatingModelingMonitorPhase I Clinical TrialsPhysiciansPre-Clinical ModelProcessProductionRegulatory T-LymphocyteResearch PersonnelSafetySuppressor-Effector T-LymphocytesSystemT cell therapyT-LymphocyteTestingTransplant RecipientsTransplant SurgeonWorkallograft rejectionbasechimeric antigen receptorchimeric antigen receptor T cellscostdiabetes mellitus therapyempoweredengineered T cellsexperienceexperimental studyfibroblast-activating factorfirst-in-humangamma-Aminobutyric Acidgene therapyhumanized mouseimprovedin vivoinnovationinsulin dependent diabetes mellitus onsetisletmouse modelnonhuman primatenovelpreventprogrammed cell death ligand 1screeningsuccess
项目摘要
A. Specific Aims
Type 1 diabetes (T1D) is a progressive autoimmune disease which renders individuals incapable of regulating their blood glucose levels due to immune-mediated β cell destruction, resulting in loss of insulin production and many severe health complications that, if untreated, lead to death. Careful monitoring of blood glucose coupled with insulin injections have made T1D a chronic disease in which T1D individuals live ~ a decade less than their healthy counterparts. Thus, a cure for T1D is highly desirable. Cell gene therapy has proven to be an effective way to treat recalcitrant diseases such as pediatric leukemia, where chimeric antigen receptor (CAR) expressing T cells achieve 90% complete response, putting many individuals into very long remissions1, but to date no engineered T cell therapies have been attempted to cure T1D in humans.
We propose to test the hypothesis that engineered T cells can enable islet transplant with minimal or no additional immunosuppression. Islet transplantation represents the best-case scenario to test the ability of engineered T cells to protect islet cells from immune attack and will likely lay the foundation by which strategies are developed to treat new onset T1D. In islet transplant, MHC matching of donor and recipient rarely occurs, generating highly expressed, unique islet-specific HLA antigens that can be targeted by CAR engineered T regulatory cells (CAR Tregs) or T cells engineered to express molecules that suppress the immune system (T suppressor cells or Tsups). Additionally, through a comprehensive screening process, we have identified two targets, fibroblast activation protein (FAP) and dipeptidyl peptidase like 6 (DPP6), that are highly expressed on α and β cells and have limited expression elsewhere that could be used to treat recently diagnosed individuals, and all transplant recipients without the desired MHC mismatch. In this proposal, we will further develop this toolbox to both develop better in vivo, preclinical models of T1D and new cell and gene therapies that will prevent, stall or reverse T1D.
Within the last decade, rapid progress made in T cell-based therapies makes it possible to consider such therapies for T1D. Following long-term remission of 3 cancer patients treated by CD19-specific CARs developed by the Center for Cellular Immunotherapies at Penn under the leadership of Carl June2, the CAR T cell revolution was launched. This early success drove considerable investment, empowering many institutions and companies to develop ways to improve both the safety and efficacy of, and reduce cost to produce engineered T cells. Many of these innovations will also help enable cell and gene therapies for T1D, which is the overarching goal of this RFA. The ultimate goal of this application is to successfully treat three non- human primates (NHP) with engineered T cells after an islet transplant, which we predict will launch similar enthusiasm for T1D cell and gene therapy as the first three CD19-CAR recipients did for cancer CAR therapy.
To achieve this goal, an experienced team of investigators with complementary expertise will lead this proposal. This team, a transplant surgeon who helped pioneer islet transplantation as a T1D therapy (Naji), a veterinary physician with expertise developing NHP T regulatory cell therapy models (Duran-Struuck), and a cell and gene therapist with a track record of engineering T cells and developing first-in-human clinical trials (Riley), have been working closely together via Helmsley Foundation funding to obtain the preliminary data presented in this application. This team is now is poised to immediately perform in vivo studies to test the ability of engineered T cell therapies to prevent, stall, or reverse T1D.
Aim 1. Engineer T Suppressor Cells (Tsups) to Facilitate Islet Transplant in Humanized Mouse Models. While T regulatory cells are potent immune suppressors, there are other promising ways to induce tolerance that may work as stand-alone therapies or synergize with CAR Tregs to protect β cell function. We will explore using PD-L1, TGF-β1, and/or γ-aminobutiric acid (GABA) expressing cells targeted to the islet to mediate islet acceptance alone or in combination with CAR Treg approaches we developed using humanized mice.
Aim 2. Optimize T cell Approaches to Promote Islet Transplant in NHPs. To date our efforts have focused on developing NHP CAR Tregs to enable islet transplant. We have optimized isolation, transduction, and expansion of NHP MHC-specific CAR T regulatory cells and are poised to start islet transplant experiments immediately. After we perform proof of principle experiments using CAR Tregs, we will prioritize future experiments based on the data obtained in Aim 1. A particularly exciting aspect of our studies is testing whether the ortho-IL-2 system developed by the Garcia Lab3 can work in non-human primates and support engineered Treg or other engineered T cell function and expansion while having no effect on endogenous effector cells. If successful, these studies will form the basis and rationale for Phase I clinical trials in humans.
A. 具体目标
1 型糖尿病 (T1D) 是一种进行性自身免疫性疾病,由于免疫介导的 β 细胞破坏,导致个体无法调节血糖水平,从而导致胰岛素产生丧失和许多严重的健康并发症,如果不及时治疗,可能会导致死亡。仔细监测血糖并注射胰岛素已使 T1D 成为一种慢性疾病,T1D 患者的寿命比健康人短约十年。因此,非常需要治愈 T1D。细胞基因疗法已被证明是治疗儿童白血病等顽固性疾病的有效方法,表达嵌合抗原受体 (CAR) 的 T 细胞达到 90% 的完全缓解,使许多个体获得很长的缓解1,但迄今为止,尚未尝试工程化 T 细胞疗法来治愈人类 T1D。
我们建议检验这样的假设:工程化 T 细胞可以在最少或无需额外免疫抑制的情况下实现胰岛移植。胰岛移植代表了测试工程化 T 细胞保护胰岛细胞免受免疫攻击的能力的最佳方案,并且可能为制定治疗新发 T1D 的策略奠定基础。在胰岛移植中,供体和受体的 MHC 匹配很少发生,从而产生高表达的、独特的胰岛特异性 HLA 抗原,这些抗原可以被 CAR 工程化 T 调节细胞 (CAR Tregs) 或工程化表达抑制免疫系统分子的 T 细胞 (T 抑制细胞或 Tsups) 靶向。此外,通过全面的筛选过程,我们确定了两个靶标,即成纤维细胞激活蛋白 (FAP) 和二肽基肽酶样 6 (DPP6),它们在 α 和 β 细胞上高度表达,而在其他地方表达有限,可用于治疗最近诊断的个体以及所有没有所需 MHC 不匹配的移植受者。在本提案中,我们将进一步开发该工具箱,以开发更好的 T1D 体内临床前模型以及预防、阻止或逆转 T1D 的新细胞和基因疗法。
过去十年中,基于 T 细胞的疗法取得了快速进展,使得考虑使用此类疗法治疗 T1D 成为可能。在 Carl June2 领导下宾夕法尼亚大学细胞免疫治疗中心开发的 CD19 特异性 CAR 治疗 3 名癌症患者获得长期缓解后,CAR T 细胞革命开始了。这一早期成功带动了大量投资,使许多机构和公司能够开发方法来提高工程 T 细胞的安全性和有效性,并降低生产成本。其中许多创新还将有助于实现 T1D 的细胞和基因疗法,这是本次 RFA 的首要目标。该应用的最终目标是在胰岛移植后用工程化 T 细胞成功治疗三只非人类灵长类动物 (NHP),我们预测这将引发人们对 T1D 细胞和基因治疗的热情,就像前三名 CD19-CAR 接受者对癌症 CAR 疗法所做的那样。
为了实现这一目标,一个经验丰富、具有互补专业知识的研究团队将领导该提案。该团队包括一名移植外科医生,帮助开创了胰岛移植作为 T1D 疗法的先行者 (Naji),一名擅长开发 NHP T 调节细胞治疗模型的兽医医师 (Duran-Struuck),以及一名拥有工程 T 细胞和开展首次人体临床试验记录的细胞和基因治疗师 (Riley),他们一直通过赫尔姆斯利基金会的资助密切合作,以获得 本申请中提供的初步数据。该团队现在准备立即进行体内研究,以测试工程 T 细胞疗法预防、阻止或逆转 T1D 的能力。
目标 1. 改造 T 抑制细胞 (Tsups) 以促进人源化小鼠模型中的胰岛移植。虽然 T 调节细胞是有效的免疫抑制剂,但还有其他有前景的方法来诱导耐受,这些方法可以作为独立疗法或与 CAR Tregs 协同作用以保护 β 细胞功能。我们将探索使用针对胰岛的 PD-L1、TGF-β1 和/或 γ-氨基丁酸 (GABA) 表达细胞单独或与我们使用人源化小鼠开发的 CAR Treg 方法相结合来介导胰岛接受。
目标 2. 优化 T 细胞方法以促进 NHP 中的胰岛移植。迄今为止,我们的工作重点是开发 NHP CAR Tregs 以实现胰岛移植。我们已经优化了 NHP MHC 特异性 CAR T 调节细胞的分离、转导和扩增,并准备立即开始胰岛移植实验。在我们使用 CAR Tregs 进行原理验证实验后,我们将根据目标 1 中获得的数据确定未来实验的优先顺序。我们研究的一个特别令人兴奋的方面是测试 Garcia Lab3 开发的 ortho-IL-2 系统是否可以在非人类灵长类动物中发挥作用,并支持工程 Treg 或其他工程 T 细胞的功能和扩增,同时对内源效应细胞没有影响。如果成功,这些研究将构成人体 I 期临床试验的基础和基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond Duran-Struuck其他文献
Raymond Duran-Struuck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond Duran-Struuck', 18)}}的其他基金
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
- 批准号:
7664503 - 财政年份:2007
- 资助金额:
$ 78万 - 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
- 批准号:
7502704 - 财政年份:2007
- 资助金额:
$ 78万 - 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
- 批准号:
8089418 - 财政年份:2007
- 资助金额:
$ 78万 - 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
- 批准号:
7356788 - 财政年份:2007
- 资助金额:
$ 78万 - 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
- 批准号:
7860590 - 财政年份:2007
- 资助金额:
$ 78万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 78万 - 项目类别:
Standard Grant














{{item.name}}会员




