Engineering T cells to Promote Islet Transplant

工程 T 细胞促进胰岛移植

基本信息

  • 批准号:
    10592420
  • 负责人:
  • 金额:
    $ 77.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

A. Specific Aims Type 1 diabetes (T1D) is a progressive autoimmune disease which renders individuals incapable of regulating their blood glucose levels due to immune-mediated β cell destruction, resulting in loss of insulin production and many severe health complications that, if untreated, lead to death. Careful monitoring of blood glucose coupled with insulin injections have made T1D a chronic disease in which T1D individuals live ~ a decade less than their healthy counterparts. Thus, a cure for T1D is highly desirable. Cell gene therapy has proven to be an effective way to treat recalcitrant diseases such as pediatric leukemia, where chimeric antigen receptor (CAR) expressing T cells achieve 90% complete response, putting many individuals into very long remissions1, but to date no engineered T cell therapies have been attempted to cure T1D in humans. We propose to test the hypothesis that engineered T cells can enable islet transplant with minimal or no additional immunosuppression. Islet transplantation represents the best-case scenario to test the ability of engineered T cells to protect islet cells from immune attack and will likely lay the foundation by which strategies are developed to treat new onset T1D. In islet transplant, MHC matching of donor and recipient rarely occurs, generating highly expressed, unique islet-specific HLA antigens that can be targeted by CAR engineered T regulatory cells (CAR Tregs) or T cells engineered to express molecules that suppress the immune system (T suppressor cells or Tsups). Additionally, through a comprehensive screening process, we have identified two targets, fibroblast activation protein (FAP) and dipeptidyl peptidase like 6 (DPP6), that are highly expressed on α and β cells and have limited expression elsewhere that could be used to treat recently diagnosed individuals, and all transplant recipients without the desired MHC mismatch. In this proposal, we will further develop this toolbox to both develop better in vivo, preclinical models of T1D and new cell and gene therapies that will prevent, stall or reverse T1D. Within the last decade, rapid progress made in T cell-based therapies makes it possible to consider such therapies for T1D. Following long-term remission of 3 cancer patients treated by CD19-specific CARs developed by the Center for Cellular Immunotherapies at Penn under the leadership of Carl June2, the CAR T cell revolution was launched. This early success drove considerable investment, empowering many institutions and companies to develop ways to improve both the safety and efficacy of, and reduce cost to produce engineered T cells. Many of these innovations will also help enable cell and gene therapies for T1D, which is the overarching goal of this RFA. The ultimate goal of this application is to successfully treat three non- human primates (NHP) with engineered T cells after an islet transplant, which we predict will launch similar enthusiasm for T1D cell and gene therapy as the first three CD19-CAR recipients did for cancer CAR therapy. To achieve this goal, an experienced team of investigators with complementary expertise will lead this proposal. This team, a transplant surgeon who helped pioneer islet transplantation as a T1D therapy (Naji), a veterinary physician with expertise developing NHP T regulatory cell therapy models (Duran-Struuck), and a cell and gene therapist with a track record of engineering T cells and developing first-in-human clinical trials (Riley), have been working closely together via Helmsley Foundation funding to obtain the preliminary data presented in this application. This team is now is poised to immediately perform in vivo studies to test the ability of engineered T cell therapies to prevent, stall, or reverse T1D. Aim 1. Engineer T Suppressor Cells (Tsups) to Facilitate Islet Transplant in Humanized Mouse Models. While T regulatory cells are potent immune suppressors, there are other promising ways to induce tolerance that may work as stand-alone therapies or synergize with CAR Tregs to protect β cell function. We will explore using PD-L1, TGF-β1, and/or γ-aminobutiric acid (GABA) expressing cells targeted to the islet to mediate islet acceptance alone or in combination with CAR Treg approaches we developed using humanized mice. Aim 2. Optimize T cell Approaches to Promote Islet Transplant in NHPs. To date our efforts have focused on developing NHP CAR Tregs to enable islet transplant. We have optimized isolation, transduction, and expansion of NHP MHC-specific CAR T regulatory cells and are poised to start islet transplant experiments immediately. After we perform proof of principle experiments using CAR Tregs, we will prioritize future experiments based on the data obtained in Aim 1. A particularly exciting aspect of our studies is testing whether the ortho-IL-2 system developed by the Garcia Lab3 can work in non-human primates and support engineered Treg or other engineered T cell function and expansion while having no effect on endogenous effector cells. If successful, these studies will form the basis and rationale for Phase I clinical trials in humans.
A.具体目标 1型糖尿病(T1 D)是一种进行性自身免疫性疾病,由于免疫介导的β细胞破坏,使个体无法调节其血糖水平,导致胰岛素产生丧失和许多严重的健康并发症,如果不治疗,会导致死亡。对血糖的仔细监测加上胰岛素注射使T1 D成为一种慢性疾病,其中T1 D个体的寿命比健康对照组少十年。因此,T1 D的治愈是非常期望的。细胞基因疗法已被证明是治疗儿童白血病等难治性疾病的有效方法,其中表达嵌合抗原受体(CAR)的T细胞达到90%的完全应答,使许多个体进入非常长的缓解期1,但迄今为止还没有工程化T细胞疗法试图治愈人类的T1 D。 我们建议测试的假设,工程化的T细胞可以使胰岛移植与最小或没有额外的免疫抑制。胰岛移植代表了测试工程化T细胞保护胰岛细胞免受免疫攻击的能力的最佳情况,并可能为开发治疗新发T1 D的策略奠定基础。在胰岛移植中,供体和受体的MHC匹配很少发生,产生高度表达的独特的胰岛特异性HLA抗原,其可以被CAR工程化的T调节细胞(CAR T细胞)或被工程化以表达抑制免疫系统的分子的T细胞(T抑制细胞或Tsups)靶向。此外,通过全面的筛选过程,我们已经确定了两个靶点,成纤维细胞活化蛋白(FAP)和二肽基肽酶样6(DPP 6),它们在α和β细胞上高度表达,在其他地方表达有限,可用于治疗最近诊断的个体,以及所有没有期望的MHC错配的移植受体。在本提案中,我们将进一步开发这个工具箱,以开发更好的T1 D体内临床前模型以及预防、阻止或逆转T1 D的新细胞和基因疗法。 在过去的十年中,基于T细胞的疗法取得了快速进展,使人们有可能考虑T1 D的此类疗法。在Carl June 2领导下,宾夕法尼亚大学细胞免疫治疗中心开发的CD 19特异性汽车治疗了3名癌症患者,使其长期缓解,随后启动了CAR T细胞革命。这一早期的成功推动了大量的投资,使许多机构和公司能够开发出提高工程T细胞安全性和有效性并降低生产成本的方法。其中许多创新还将有助于实现T1 D的细胞和基因治疗,这是RFA的总体目标。该应用的最终目标是在胰岛移植后用工程化T细胞成功治疗三种非人灵长类动物(NHP),我们预测这将引发对T1 D细胞和基因治疗的类似热情,就像前三个CD 19-CAR接受者对癌症CAR治疗所做的那样。 为实现这一目标,将由一个经验丰富、具有互补专长的调查员小组领导这一提议。该团队是一名移植外科医生,曾帮助开拓胰岛移植作为T1 D治疗(Naji),一名兽医,具有开发NHP T调节细胞治疗模型的专业知识(Duran-Struuck)和细胞和基因治疗师,拥有工程T细胞和开发首次人体临床试验的记录(Riley),通过赫尔姆斯利基金会的资助,我们一直在密切合作,以获得本申请中提供的初步数据。该团队现在准备立即进行体内研究,以测试工程化T细胞疗法预防、阻止或逆转T1 D的能力。 目标1.工程化T抑制细胞(Tsups)以促进人源化小鼠模型中的胰岛移植。虽然调节性T细胞是有效的免疫抑制剂,但还有其他有希望的诱导耐受性的方法,可以作为独立疗法或与CAR T细胞协同作用以保护β细胞功能。我们将探索使用靶向胰岛的PD-L1、TGF-β1和/或γ-氨基丁酸(GABA)表达细胞单独或与我们使用人源化小鼠开发的CAR Treg方法联合介导胰岛接受。 目标2.优化T细胞方法以促进NHP中的胰岛移植。到目前为止,我们的努力集中在开发NHP CAR T细胞,使胰岛移植。我们已经优化了NHP MHC特异性CAR T调节细胞的分离、转导和扩增,并准备立即开始胰岛移植实验。在我们使用CAR Tandem进行原理验证实验后,我们将根据目标1中获得的数据优先考虑未来的实验。我们研究的一个特别令人兴奋的方面是测试加西亚实验室3开发的ortho-IL-2系统是否可以在非人类灵长类动物中工作,并支持工程化Treg或其他工程化T细胞功能和扩增,同时对内源性效应细胞没有影响。如果成功,这些研究将成为人体I期临床试验的基础和理论依据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymond Duran-Struuck其他文献

Raymond Duran-Struuck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymond Duran-Struuck', 18)}}的其他基金

Engineering T cells to Promote Islet Transplant
工程 T 细胞促进胰岛移植
  • 批准号:
    10446702
  • 财政年份:
    2022
  • 资助金额:
    $ 77.69万
  • 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
  • 批准号:
    7664503
  • 财政年份:
    2007
  • 资助金额:
    $ 77.69万
  • 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
  • 批准号:
    7502704
  • 财政年份:
    2007
  • 资助金额:
    $ 77.69万
  • 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
  • 批准号:
    8089418
  • 财政年份:
    2007
  • 资助金额:
    $ 77.69万
  • 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
  • 批准号:
    7356788
  • 财政年份:
    2007
  • 资助金额:
    $ 77.69万
  • 项目类别:
DEVELOPMENT OF A LARGE ANIMAL TUMOR MODEL FOR ASSESSING GVL IMMUNOTHERAPY
开发用于评估 GVL 免疫治疗的大型动物肿瘤模型
  • 批准号:
    7860590
  • 财政年份:
    2007
  • 资助金额:
    $ 77.69万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 77.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了