Circuit mechanisms underlying network disruption and temporal processing deficits in Alzheimer's
阿尔茨海默氏症网络中断和时间处理缺陷背后的电路机制
基本信息
- 批准号:10448151
- 负责人:
- 金额:$ 65.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer’s disease biomarkerAmyloid beta-42Amyloid beta-ProteinAppearanceAreaAuditoryAuditory areaAuditory systemBehaviorBehavioralBiologicalBiological MarkersBrain regionCell DeathChronicCognitive deficitsConsensusDataDetectionDevelopmentDiseaseDisease ProgressionEarly DiagnosisElectrophysiology (science)FailureFeedbackFunctional Magnetic Resonance ImagingGoalsImageImpairmentInvestigationKnowledgeMeasuresMemory impairmentMolecularMolecular GeneticsMotorMusNatureNeurobiologyNeuronsOutputResearchResolutionRestSenile PlaquesSensorySynapsesTestingTherapeutic InterventionTimeamyloid pathologybasebehavioral impairmentdensityearly detection biomarkersearly onsetfunctional disabilityhippocampal pyramidal neuroninnovationinsightmolecular pathologymouse modelneural circuitnovelnovel therapeutic interventionoperationpotential biomarkerrelating to nervous systemtwo-photon
项目摘要
Abstract:
Despite substantial knowledge of the molecular and genetic mechanisms contributing to amyloid pathology,
very little is known about how these molecular mechanisms affect the operation of neural circuits, and how this
disrupts neural computation to ultimately produce behavioral deficits in Alzheimer's. Here we seek to
understand the mechanisms underlying two emerging early biomarkers — auditory gap detection deficits and
functional disconnection of cortical networks — and how these are mechanistically related to one another. The
objective of this proposal is to determine when and how network function is disrupted in auditory and other
cortical areas, and how this impairs behavioral gap detection in the 5XFAD mouse model of Alzheimer's. Our
central hypothesis is that gap detection deficits result from specific disruption of gap detection circuits in
auditory cortex, as a consequence of large-scale network disruption both within and among cortical areas. Aim
1 will determine the computational mechanisms underlying progressive network disruption. Our working
hypothesis is that network disruption is not just a global degradation, but occurs specifically as a loss of hub
neurons over time, disconnecting modules and cortical areas. Aim 2 will determine how network disruption
affects the flow of feedforward and feedback information across the cortical hierarchy. Our working hypothesis
is that top-down feedback projections are impaired earlier and more profoundly than feedforward projections.
Aim 3 will determine how network disruption impairs the computation of gap selectivity in auditory cortex, and
how this impairs gap detection behavior. Our working hypothesis is that gap selectivity is computed in the
superficial layers and impacts behavior via output from layer 5. We will test these hypotheses with a
combination of chronic mesoscopic 2-photon GCaMP8f imaging, high-density electrophysiology, and
quantitative behavior in 5XFAD mice. The proposed research is innovative because it uses novel
imaging/electrophysiology approaches to address how molecular pathology disrupts the operation of neural
circuits, and how this in turn disrupts neural computation to produce early-onset behavioral deficits. The
proposed research is significant because it will provide a detailed cellular- and synaptic-level mechanistic
explanation of the nature of large-scale network disruptions in Alzheimer's, and reveal how these disruptions
affect specific neural computations in auditory cortical circuits that produce specific behavioral deficits. This
understanding will deepen and extend the validity of both gap detection and fMRI functional connectivity
measures as early biomarkers for Alzheimer's, and provide insight into the nature of the window of opportunity
for potential therapeutic intervention during synaptic network impairment before permanent structural damage
occurs.
摘要:
尽管对淀粉样蛋白病理学的分子和遗传机制有大量的了解,
关于这些分子机制如何影响神经回路的运作,以及这是如何发生的,我们知之甚少。
扰乱神经计算最终导致阿尔茨海默氏症的行为缺陷。在这里,我们寻求
了解两个新兴的早期生物标志物的机制-听觉间隙检测缺陷和
皮质网络的功能性断开-以及这些网络如何在机械上相互关联。的
这项建议的目的是确定何时以及如何在听觉和其他神经网络功能中断,
皮质区,以及这如何损害阿尔茨海默氏症的5XFAD小鼠模型中的行为间隙检测。我们
中心假设是,间隙检测缺陷是由特定的间隙检测电路的中断引起的,
听觉皮层,这是皮层区域内部和之间大规模网络中断的结果。目的
1将确定渐进式网络中断的计算机制。我们的工作
一种假设是,网络中断不仅仅是一种全球性的退化,而是具体表现为集线器的丢失
神经元随着时间的推移,断开模块和皮层区域。目标2将确定网络中断
影响前馈和反馈信息在皮层层次中的流动。我们的工作假设
自上而下的反馈投射比前馈投射受损更早更深。
目标3将确定网络中断如何损害听觉皮层中间隙选择性的计算,
这如何损害间隙检测行为。我们的工作假设是,间隙选择性是在
表面层并通过来自层5的输出影响行为。我们将测试这些假设与
慢性介观双光子GCaMP 8 f成像、高密度电生理学和
5XFAD小鼠的定量行为。这项研究是创新的,因为它使用了新的
成像/电生理学方法来解决分子病理学如何破坏神经系统的运作,
电路,以及这反过来如何破坏神经计算,产生早发性行为缺陷。的
拟议的研究很重要,因为它将提供详细的细胞和突触水平机制
解释阿尔茨海默氏症中大规模网络中断的性质,并揭示这些中断是如何发生的。
影响听觉皮层回路中产生特定行为缺陷的特定神经计算。这
理解将加深和扩展缺口检测和功能磁共振成像功能连接的有效性
作为阿尔茨海默病的早期生物标志物进行测量,并提供对机会之窗性质的洞察
在永久性结构损伤之前的突触网络损伤期间进行潜在的治疗干预
发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Wehr其他文献
Michael Wehr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Wehr', 18)}}的其他基金
Circuit mechanisms underlying network disruption and temporal processing deficits in Alzheimer's
阿尔茨海默氏症网络中断和时间处理缺陷背后的电路机制
- 批准号:
10633164 - 财政年份:2022
- 资助金额:
$ 65.97万 - 项目类别:
Circuit mechanisms underlying temporal processing in auditory cortex
听觉皮层时间处理的电路机制
- 批准号:
10058263 - 财政年份:2016
- 资助金额:
$ 65.97万 - 项目类别:
Synaptic mechanisms of coding transformations in auditory cortex
听觉皮层编码转换的突触机制
- 批准号:
8385566 - 财政年份:2010
- 资助金额:
$ 65.97万 - 项目类别:
Synaptic mechanisms of coding transformations in auditory cortex
听觉皮层编码转换的突触机制
- 批准号:
8196712 - 财政年份:2010
- 资助金额:
$ 65.97万 - 项目类别:
Synaptic mechanisms of coding transformations in auditory cortex
听觉皮层编码转换的突触机制
- 批准号:
8585050 - 财政年份:2010
- 资助金额:
$ 65.97万 - 项目类别:
Synaptic mechanisms of coding transformations in auditory cortex
听觉皮层编码转换的突触机制
- 批准号:
8027457 - 财政年份:2010
- 资助金额:
$ 65.97万 - 项目类别:
BRAINSTEM MODULATION OF STRIATE CORTICAL NEURONS
纹状皮层神经元的脑干调节
- 批准号:
6324067 - 财政年份:2000
- 资助金额:
$ 65.97万 - 项目类别:
BRAINSTEM MODULATION OF STRIATE CORTICAL NEURONS
纹状皮层神经元的脑干调节
- 批准号:
6403198 - 财政年份:2000
- 资助金额:
$ 65.97万 - 项目类别:
BRAINSTEM MODULATION OF STRIATE CORTICAL NEURONS
纹状皮层神经元的脑干调节
- 批准号:
2775373 - 财政年份:1999
- 资助金额:
$ 65.97万 - 项目类别:
BRAINSTEM MODULATION OF STRIATE CORTICAL NEURONS
纹状皮层神经元的脑干调节
- 批准号:
6125060 - 财政年份:1999
- 资助金额:
$ 65.97万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 65.97万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 65.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 65.97万 - 项目类别:
Studentship