Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
基本信息
- 批准号:10448093
- 负责人:
- 金额:$ 14.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-11 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:37 weeks gestationAdoptedAdverse effectsAlgorithmsAreaArtificial IntelligenceAttentionBehavioralBirthBirth RateBlack raceChild HealthChronicChronic stressClinicalComplementComplexComputersDataDatabasesEarly InterventionEthnic OriginExposure toFamilyFemale of child bearing ageFinancial HardshipGoalsGrantHealth PromotionHealthcareHigh PrevalenceHybridsIncidenceInfantInstructionKnowledgeLearningLinear RegressionsLinkLiteratureLogistic RegressionsMachine LearningManuscriptsMaternal and Child HealthMeasurementMeasuresMedical Care CostsMethodologyMethodsModelingMonitorNatureNot Hispanic or LatinoOutcomePatientsPatternPopulationPopulations at RiskPregnancyPregnant WomenPremature BirthPreparationPublic Health InformaticsROC CurveRaceResearch DesignRiskRisk AssessmentRisk FactorsSamplingStatistical ModelsStressStudy modelsSystemTechniquesTestingTimeTrainingVariantViolenceWomanbaseblack womenblack/white disparitycareer developmentcommunity settingdeep neural networkearly screeningethnic diversityethnic minority populationexperiencelarge scale datamachine learning algorithmmachine learning modelmaternal riskmultidimensional dataneural network algorithmnovelpeerpreventracial and ethnicracial and ethnic disparitiesrisk predictionskillssocialsociodemographicsstressortool
项目摘要
Racial/ethnic disparities in preterm birth (PTB) are persistent in the U.S., with a higher prevalence of PTB in
non-Hispanic (N-H) Black women than their N-H White counterparts. However, the underlying mechanism of
such Black-White differences is not well understood. Even extensive biomedical, behavioral, and socio-
demographic risk factors can explain only about half of PTB incidence. Chronic stress has received significant
attention as a robust predictor of PTB, particularly among racial/ethnic minority groups. Nevertheless, literature
shows inconsistent evidence on the relationships among race/ethnicity, chronic stress, and PTB, mainly
because of the complexities involved in assessing women’s chronic stress exposures. Accurate chronic stress
measures should capture the nature of stressors: cumulative, interactive, and population-specific. In this
regard, conventional statistical models (e.g., linear regression) have limited ability to model chronic stress
exposures with high precision. Thus, this study will adopt machine learning (ML), a state-of-the-art modeling
technique, to compute non-linear and synergistic relationships among chronic stressors, detect unknown
patterns, and reflect subtle differences in chronic stressors between N-H White and N-H Black women for more
accurate prediction of their PTB risk. I will develop simple, accurate, and explainable ML algorithms of chronic
stress exposures by building a hybrid algorithm specific to N-H White and N-H Black women and computing
SHAP (SHapley Additive exPlanations) values. Specifically, the hybrid algorithm will combine Multivariate
Adaptive Regression Splines (MARS) and Deep Neural Network (DNN) algorithms where MARS will select
only “important” chronic stressor variables for each race/ethnicity to serve as DNN’s input features for PTB risk
prediction. Additionally, a SHAP value for each chronic stressor in the final algorithm will quantify its degree of
contribution to the predicted PTB risk. The ML algorithms will be trained and tested on a large national
database—Pregnancy Risk Assessment Monitoring System (2012-2017)—collected by 37 U.S. states. The
study’s specific aims are to 1) compare the accuracy among logistic regression (LR) and two ML algorithms
(DNN and hybrid) of chronic stress exposures to predict PTB risk using area under the receiver operating
characteristic curve (AUC); 2) compare the accuracy between race/ethnicity-combined and race/ethnicity-
specific models within LR, DNN, and hybrid algorithms; and 3) determine the extent of the importance of
chronic stressors to the predicted PTB risk in the best-performing algorithm using regression coefficients (for
LR) or SHAP values (for ML algorithm). Career development goals are to 1) develop expertise in stress
measurement in the context of maternal and child health, 2) acquire knowledge and skills in ML and the
analysis of large-scale data, and 3) cultivate health informatics-focused manuscript and grant preparation skills
for independence. Results from this study will contribute to preventing PTB among vulnerable pregnant women
via early screening with more accurate, data-informed tools to assess these patients’ chronic stress.
在美国,早产(PTB)的种族/民族差异持续存在,PTB的患病率较高,
非西班牙裔(N-H)黑人女性比他们的N-H白色同行。然而,
这样的黑白差异还没有得到很好的理解。即使是广泛的生物医学,行为学和社会学-
人口学危险因素只能解释约一半的PTB发病率。慢性压力已经收到了显着的
注意力是PTB的一个强有力的预测因素,特别是在种族/少数民族群体中。然而,文学
在种族/民族、慢性压力和PTB之间的关系方面显示了不一致的证据,主要是
因为评估女性长期压力暴露的复杂性。准确的慢性压力
衡量标准应反映压力源的性质:累积性、互动性和针对具体人群。在这
关于这一点,传统的统计模型(例如,线性回归)对慢性压力建模的能力有限
曝光精度高。因此,本研究将采用机器学习(ML),一种最先进的建模方法,
技术,计算慢性压力源之间的非线性和协同关系,检测未知
模式,并反映了N-H白色和N-H黑人妇女之间的慢性压力源的微妙差异,
准确预测PTB风险。我将开发简单,准确和可解释的慢性疾病的ML算法。
通过建立一个针对N-H白色和N-H黑人女性的混合算法,
SHAP(SHapley加法解释)值。具体而言,混合算法将联合收割机多变量
自适应回归样条(MARS)和深度神经网络(DNN)算法,其中MARS将选择
每个种族/民族只有“重要的”慢性压力源变量作为DNN的PTB风险输入特征
预测.此外,最终算法中每个慢性应激源的SHAP值将量化其应激程度。
对预测的PTB风险的贡献。机器学习算法将在一个大型的国家实验室上进行训练和测试。
数据库-妊娠风险评估监测系统(2012-2017)-由美国37个州收集。的
研究的具体目的是:1)比较逻辑回归(LR)和两种ML算法之间的准确性
(DNN和混合)的慢性应激暴露,以预测肺结核的风险,使用面积下的接收器操作
特征曲线(AUC); 2)比较种族/民族组合和种族/民族之间的准确性-
LR、DNN和混合算法中的特定模型;以及3)确定
慢性压力源预测PTB风险的最佳性能算法使用回归系数(对于
LR)或SHAP值(用于ML算法)。职业发展目标是:1)培养应对压力的专业技能
在孕产妇和儿童健康的背景下进行测量,2)获得ML和
大规模数据分析,3)培养以健康信息学为重点的论文和基金准备技能
为了独立这项研究的结果将有助于预防脆弱孕妇的PTB
通过早期筛查,使用更准确的数据信息工具来评估这些患者的慢性压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangmi Kim其他文献
Sangmi Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangmi Kim', 18)}}的其他基金
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10620851 - 财政年份:2022
- 资助金额:
$ 14.45万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 14.45万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 14.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 14.45万 - 项目类别:
Research Fellowships