Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients

住院 COVID-19 患者的多维结果预测算法

基本信息

项目摘要

PROJECT SUMMARY Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated coronavirus disease (COVID-19) is an evolutionarily unprecedented natural experiment that causes major changes to the host immune system. Several high risk COVID-19 populations have been identified. Older adults, males, persons of color, and those with certain underlying health conditions (e.g., diabetes mellitus, obesity, etc.) are at higher risk for severe disease from COVID-19. While it is too soon to fully understand the impact of COVID-19 on overall health and well-being, there are already several reports of significant sequelae, which appear to correlate with disease severity. There is a clear and urgent need to develop prediction tests for adverse short- and long-term outcomes, especially for high-risk COVID-19 populations. We hypothesize that complementary multi-dimensional information gathered near the time of symptom onset can be used to predict new onset or worsening frailty, organ dysfunction and death within one year after COVID-19 onset. A single parameter provides limited information and is incapable of adequately characterizing the complex biological responses in symptomatic COVID-19 to predict outcome. Since they were designed for other illnesses, it is unlikely that existing clinical tools, such as respiratory, cardiovascular, and other organ function assessment scores, will precisely assess the long-term prognosis of this novel disease. Our extensive experience in biomarker development suggests that integrating molecular and clinical data increases prediction accuracy of long-term outcomes. We have chosen to test our hypothesis in a population reflecting US-demographics that is at increased risk of adverse outcomes from COVID-19. We will enroll patients, broadly reflecting US demographics, from a hospitalized civilian population in one of the country’s largest metropolitan areas and a representative National Veteran’s population. We anticipate that a prediction test that performs well in this hospitalized patient group will: help guide triaging and treatment decisions and, therefore, reduce morbidity and mortality rates, enhance patient quality of life, and improve healthcare cost-effectiveness. More accurate prognostic information will also assist clinicians in framing goals of care discussions in situations of likely futility and assist patients and families in this decision-making process. Finally, it will provide a logical means for allocating resources in short supply, such as ventilators or therapeutics with limited availability.
项目概要 严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 介导的冠状病毒病 (COVID-19) 是 这是一项进化上前所未有的自然实验,会导致宿主免疫系统发生重大变化。 已经确定了几个 COVID-19 高风险人群。老年人、男性、有色人种以及那些 患有某些潜在健康问题(例如糖尿病、肥胖等)的人患严重疾病的风险较高 COVID-19 引起的疾病。虽然现在全面了解 COVID-19 对整体健康和健康的影响还为时过早 健康,已经有几份关于严重后遗症的报告,这些后遗症似乎与疾病相关 严重程度。显然迫切需要开发针对短期和长期不良结果的预测测试, 特别是对于 COVID-19 高危人群。我们假设互补的多维 在症状发作附近收集的信息可用于预测新的发作或恶化 COVID-19 发病后一年内出现虚弱、器官功能障碍和死亡。单个参数提供 信息有限,无法充分描述复杂的生物反应 有症状的 COVID-19 来预测结果。由于它们是针对其他疾病而设计的,因此不太可能 现有的临床工具,如呼吸、心血管和其他器官功能评估评分,将 准确评估这种新疾病的长期预后。我们在生物标志物方面的丰富经验 发展表明,整合分子和临床数据可以提高长期预测的准确性 结果。我们选择在反映美国人口特征的人口中检验我们的假设 COVID-19 造成不良后果的风险增加。我们将招募患者,广泛反映美国 人口统计数据,来自该国最大的都市区之一的住院平民和 代表全国退伍军人人口。我们预计预测测试在这方面表现良好 住院患者小组将: 帮助指导分诊和治疗决策,从而降低发病率和 死亡率,提高患者的生活质量,并提高医疗保健成本效益。更准确 预后信息还将帮助临床医生在可能无效的情况下制定护理讨论的目标 并在决策过程中协助患者和家属。最后,它将提供一种逻辑手段 分配供应短缺的资源,例如可用有限的呼吸机或治疗药物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Owen BEENHOUWER其他文献

DAVID Owen BEENHOUWER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Owen BEENHOUWER', 18)}}的其他基金

Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10299344
  • 财政年份:
    2021
  • 资助金额:
    $ 66.58万
  • 项目类别:
Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10656282
  • 财政年份:
    2021
  • 资助金额:
    $ 66.58万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    10265385
  • 财政年份:
    2018
  • 资助金额:
    $ 66.58万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9898292
  • 财政年份:
    2018
  • 资助金额:
    $ 66.58万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9446257
  • 财政年份:
    2018
  • 资助金额:
    $ 66.58万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7739635
  • 财政年份:
    2009
  • 资助金额:
    $ 66.58万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7862592
  • 财政年份:
    2009
  • 资助金额:
    $ 66.58万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7383656
  • 财政年份:
    2008
  • 资助金额:
    $ 66.58万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    8015629
  • 财政年份:
    2008
  • 资助金额:
    $ 66.58万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7767749
  • 财政年份:
    2008
  • 资助金额:
    $ 66.58万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 66.58万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 66.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了