Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
基本信息
- 批准号:10449747
- 负责人:
- 金额:$ 12.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic-resistant organismAntibioticsAntimicrobial ResistanceBiological ModelsBiomedical EngineeringBioreactorsBlood CirculationCarbapenemsCephalosporin ResistanceCephalosporinsChromatinClinicalClinical DataCollectionCommunitiesDataDecision MakingDetectionDevelopmentDisease OutbreaksEarly DiagnosisFutureGene ExchangesGeneticGenotypeGrowthGuidelinesHealth Care CostsHorizontal Gene TransferHospitalsIndividualInfectionLinkLiteratureLung infectionsMedical centerMetagenomicsMethodsModelingMulti-Drug ResistanceMultiple Bacterial Drug ResistanceNeighborhoodsNon-linear ModelsNosocomial pneumoniaOutcomePatient IsolatorsPatientsPatternPhylogenetic AnalysisPlantsPlug-inPopulationPopulation HeterogeneityPopulation SurveillancePrevalencePublic HealthReportingResearchResistanceRiskRisk AssessmentSamplingSeriesStreamSurveillance ModelingTarget PopulationsTechniquesTemperatureTestingTimeViralbacterial resistancebasecarbapenem resistanceclinically relevantcohortcostcost effectivedata acquisitiondesignepidemiological modelexperimental studygene interactiongut colonizationhigh riskimprovedmathematical modelmolecular markermortalitymulti-drug resistant pathogennovelpathogenpathogenic bacteriapathogenic viruspatient populationpressurepreventprimary outcomeresearch clinical testingresidenceresistance alleleresistance generesistance mechanismsociodemographicstooltransmission processtrendwastewater epidemiologywastewater sampleswastewater samplingwastewater surveillancewastewater testing
项目摘要
Multidrug-resistant organisms (MDRO) pose a significant risk to public health. Infections with MDRO are
associated with high mortality rates and healthcare costs, particularly related to hospital-acquired pneumonia.
Current approaches to control and prevent transmission of these pathogens focus primarily on clinical testing
of infectious patient isolates. This is costly, labor-intensive, and fails to account for asymptomatic carriage.
Wastewater testing can overcome many of the limitations posed by patient-based surveillance by enabling
cost-effective population-level data acquisition, which can subsequently be used to model and forecast
infectious outbreaks. To date, wastewater-based testing has been successfully used for surveillance of
pathogenic viruses, but barriers remain in applying this approach to MDRO. While pathogenic bacteria and
antibiotic resistance genes (ARGs) have been detected in wastewater treatment plants, several factors
currently limit the utility and accuracy of wastewater as a marker for overall burden and diversity of antibiotic
resistance. Here, we aim to better operationalize metagenomic wastewater-based epidemiology by
understanding the dynamics of multidrug-resistant bacteria during wastewater flow, as well as the relationship
between wastewater and clinical detection of MDRO. First, we will design wastewater MDRO model systems
by constructing plug-flow reactors and testing the effects of flow parameters such as hydraulic retention time,
pH, and temperature, as well as antibiotic pressure, on the prevalence and diversity of MDRO and ARG
genotypes. This will account for dynamics in growth rates and potential ARG exchange across species along
the wastewater flow, which could significantly affect the accuracy of wastewater-based surveillance models.
These bioreactor model systems will enable future experiments testing conditions relevant to specific MDRO
species or wastewater streams. In Aim 2, we will take advantage of our ongoing longitudinal wastewater
sampling at a major hospital center and the surrounding community to correlate MDRO in wastewater with
clinical MDRO and existing patient surveillance cohorts. Through chromatin-linked metagenomics and long-
read sequencing we will elucidate phylogenetic links between MDRO in hospital and community wastewater
with infectious patient isolates, and potential differences in evolutionary patterns of MDRO in patient versus
wastewater collections. Lastly, in Aim 3 we will interrogate different approaches to wastewater-based
epidemiological modeling to estimate MDRO burden in a given community. We will contrast linear and
nonlinear additive regression models with dynamic mathematical modeling approaches. We will incorporate
wastewater flow parameters and community sociodemographics as well as molecular biomarker data, as
normalization factors to improve model accuracy. Risk assessment techniques will be applied to these
wastewater models to inform development of future public health decision making tools. If successful, the
results of this study would enable wastewater surveillance as a tool to inform targeted mitigation strategies to
prevent the spread of antibiotic multidrug-resistance.
抗耐药的生物(MDRO)对公共卫生构成了重大风险。 MDRO感染是
与高死亡率和医疗保健成本有关,特别是与医院获得的肺炎有关。
当前控制和防止传播这些病原体的方法主要集中在临床测试上
传染病患者分离株。这是代价高昂的,劳动力密集的,无法解释无症状的运输。
废水测试可以克服基于患者的监视所带来的许多限制
具有成本效益的人群级数据获取,随后可以用于建模和预测
传染性暴发。迄今为止,基于废水的测试已成功用于监视
致病性病毒,但障碍仍在将这种方法应用于MDRO中。而致病细菌和
在废水处理厂已经检测到抗生素抗性基因(ARGS),这是几个因素
目前限制废水的效用和准确性,作为抗生素总体负担和多样性的标志
反抗。在这里,我们的目的是通过
了解废水流动期间多药耐药细菌的动力学以及关系
在废水和MDRO的临床检测之间。首先,我们将设计废水MDRO模型系统
通过构造插头流动反应堆并测试流参数的影响,例如液压保留时间,
pH和温度以及抗生素压力,在MDRO和ARG的流行率和多样性上
基因型。这将说明增长率的动态和跨物种跨物种的潜在交流
废水流,这可能会严重影响基于废水的监视模型的准确性。
这些生物反应器模型系统将使未来的实验测试与特定MDRO相关的条件
物种或废水流。在AIM 2中,我们将利用我们正在进行的纵向废水
在一个主要的医院中心和周围社区取样,以将MDRO与废水相关联
临床MDRO和现有的患者监视队列。通过染色质连接的宏基因组学和长期
阅读测序我们将阐明医院和社区废水之间的MDRO之间的系统发育联系
具有感染性患者分离株以及患者MDRO进化模式的潜在差异
废水收集。最后,在AIM 3中,我们将询问基于废水的不同方法
流行病学建模以估计给定社区的MDRO负担。我们将对比线性和
具有动态数学建模方法的非线性添加回归模型。我们将合并
废水流参数和社区社会人口统计学以及分子生物标志物数据,作为
提高模型准确性的归一化因素。风险评估技术将应用于这些技术
废水模型为未来公共卫生决策工具的开发提供信息。如果成功,
这项研究的结果将使废水监视作为一种工具,以告知有针对性的缓解策略
防止抗生素多药的耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Medini Annavajhala其他文献
Medini Annavajhala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Medini Annavajhala', 18)}}的其他基金
Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
- 批准号:
10679007 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Shaping Next Generation Aminoglycoside Antibiotics for Treatment of Multidrug-Resistant Diseases
打造下一代氨基糖苷类抗生素治疗多重耐药性疾病
- 批准号:
10585038 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
O-polysaccharide (OPS)-IpaB Conjugate Vaccine to Prevent Shigellosis
O-多糖 (OPS)-IpaB 结合疫苗预防志贺氏菌病
- 批准号:
10704815 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Immune recognition of Klebsiella pneumoniae O2v1 and O2v2 O-antigen subtypes
肺炎克雷伯菌 O2v1 和 O2v2 O 抗原亚型的免疫识别
- 批准号:
10739041 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
A theranostic ultrasound approach to improve chronic wound treatment using phase-change contrast agents
使用相变造影剂改善慢性伤口治疗的超声治疗方法
- 批准号:
10733848 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别: