Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
基本信息
- 批准号:10449747
- 负责人:
- 金额:$ 12.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic-resistant organismAntibioticsAntimicrobial ResistanceBiological ModelsBiomedical EngineeringBioreactorsBlood CirculationCarbapenemsCephalosporin ResistanceCephalosporinsChromatinClinicalClinical DataCollectionCommunitiesDataDecision MakingDetectionDevelopmentDisease OutbreaksEarly DiagnosisFutureGene ExchangesGeneticGenotypeGrowthGuidelinesHealth Care CostsHorizontal Gene TransferHospitalsIndividualInfectionLinkLiteratureLung infectionsMedical centerMetagenomicsMethodsModelingMulti-Drug ResistanceMultiple Bacterial Drug ResistanceNeighborhoodsNon-linear ModelsNosocomial pneumoniaOutcomePatient IsolatorsPatientsPatternPhylogenetic AnalysisPlantsPlug-inPopulationPopulation HeterogeneityPopulation SurveillancePrevalencePublic HealthReportingResearchResistanceRiskRisk AssessmentSamplingSeriesStreamSurveillance ModelingTarget PopulationsTechniquesTemperatureTestingTimeViralbacterial resistancebasecarbapenem resistanceclinically relevantcohortcostcost effectivedata acquisitiondesignepidemiological modelexperimental studygene interactiongut colonizationhigh riskimprovedmathematical modelmolecular markermortalitymulti-drug resistant pathogennovelpathogenpathogenic bacteriapathogenic viruspatient populationpressurepreventprimary outcomeresearch clinical testingresidenceresistance alleleresistance generesistance mechanismsociodemographicstooltransmission processtrendwastewater epidemiologywastewater sampleswastewater samplingwastewater surveillancewastewater testing
项目摘要
Multidrug-resistant organisms (MDRO) pose a significant risk to public health. Infections with MDRO are
associated with high mortality rates and healthcare costs, particularly related to hospital-acquired pneumonia.
Current approaches to control and prevent transmission of these pathogens focus primarily on clinical testing
of infectious patient isolates. This is costly, labor-intensive, and fails to account for asymptomatic carriage.
Wastewater testing can overcome many of the limitations posed by patient-based surveillance by enabling
cost-effective population-level data acquisition, which can subsequently be used to model and forecast
infectious outbreaks. To date, wastewater-based testing has been successfully used for surveillance of
pathogenic viruses, but barriers remain in applying this approach to MDRO. While pathogenic bacteria and
antibiotic resistance genes (ARGs) have been detected in wastewater treatment plants, several factors
currently limit the utility and accuracy of wastewater as a marker for overall burden and diversity of antibiotic
resistance. Here, we aim to better operationalize metagenomic wastewater-based epidemiology by
understanding the dynamics of multidrug-resistant bacteria during wastewater flow, as well as the relationship
between wastewater and clinical detection of MDRO. First, we will design wastewater MDRO model systems
by constructing plug-flow reactors and testing the effects of flow parameters such as hydraulic retention time,
pH, and temperature, as well as antibiotic pressure, on the prevalence and diversity of MDRO and ARG
genotypes. This will account for dynamics in growth rates and potential ARG exchange across species along
the wastewater flow, which could significantly affect the accuracy of wastewater-based surveillance models.
These bioreactor model systems will enable future experiments testing conditions relevant to specific MDRO
species or wastewater streams. In Aim 2, we will take advantage of our ongoing longitudinal wastewater
sampling at a major hospital center and the surrounding community to correlate MDRO in wastewater with
clinical MDRO and existing patient surveillance cohorts. Through chromatin-linked metagenomics and long-
read sequencing we will elucidate phylogenetic links between MDRO in hospital and community wastewater
with infectious patient isolates, and potential differences in evolutionary patterns of MDRO in patient versus
wastewater collections. Lastly, in Aim 3 we will interrogate different approaches to wastewater-based
epidemiological modeling to estimate MDRO burden in a given community. We will contrast linear and
nonlinear additive regression models with dynamic mathematical modeling approaches. We will incorporate
wastewater flow parameters and community sociodemographics as well as molecular biomarker data, as
normalization factors to improve model accuracy. Risk assessment techniques will be applied to these
wastewater models to inform development of future public health decision making tools. If successful, the
results of this study would enable wastewater surveillance as a tool to inform targeted mitigation strategies to
prevent the spread of antibiotic multidrug-resistance.
多重耐药微生物(MDRO)对公众健康构成重大风险。 MDRO 感染是
与高死亡率和医疗费用有关,特别是与医院获得性肺炎有关。
目前控制和预防这些病原体传播的方法主要集中在临床测试上
传染性患者分离株。这是成本高昂、劳动密集型的,而且无法考虑到无症状携带者。
废水检测可以克服基于患者的监测带来的许多限制,方法是:
具有成本效益的人口水平数据采集,随后可用于建模和预测
传染病爆发。迄今为止,基于废水的测试已成功用于监测
病原病毒,但将这种方法应用于 MDRO 仍然存在障碍。虽然致病菌和
在废水处理厂中检测到抗生素抗性基因(ARG),有几个因素
目前限制了废水作为抗生素总体负荷和多样性标记的效用和准确性
反抗。在这里,我们的目标是通过以下方式更好地实施基于宏基因组废水的流行病学
了解废水流动过程中多重耐药细菌的动态以及相互关系
废水与 MDRO 临床检测之间的关系。首先,我们将设计废水MDRO模型系统
通过构建推流反应器并测试水力停留时间等流动参数的影响,
pH、温度以及抗生素压力对 MDRO 和 ARG 的流行率和多样性的影响
基因型。这将解释生长速率的动态以及物种间潜在的 ARG 交换
废水流量,这可能会显着影响基于废水的监测模型的准确性。
这些生物反应器模型系统将使未来的实验能够测试与特定 MDRO 相关的条件
物种或废水流。在目标 2 中,我们将利用我们正在进行的纵向废水处理
在主要医院中心和周边社区进行采样,将废水中的 MDRO 与
临床 MDRO 和现有患者监测队列。通过染色质相关的宏基因组学和长
读测序我们将阐明医院和社区废水中 MDRO 之间的系统发育联系
具有传染性的患者分离株,以及患者与患者之间 MDRO 进化模式的潜在差异
废水收集。最后,在目标 3 中,我们将探讨基于废水的不同方法
流行病学模型来估计特定社区的 MDRO 负担。我们将对比线性和
采用动态数学建模方法的非线性加性回归模型。我们将纳入
废水流参数和社区社会人口统计数据以及分子生物标志物数据,
标准化因子以提高模型精度。风险评估技术将应用于这些
废水模型为未来公共卫生决策工具的开发提供信息。如果成功的话,
这项研究的结果将使废水监测成为一种工具,为有针对性的缓解战略提供信息
防止抗生素多重耐药性的传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Medini Annavajhala其他文献
Medini Annavajhala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Medini Annavajhala', 18)}}的其他基金
Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
- 批准号:
10679007 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 12.05万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:














{{item.name}}会员




