Operationalizing wastewater-based surveillance of multidrug-resistant bacteria

实施基于废水的多重耐药细菌监测

基本信息

  • 批准号:
    10679007
  • 负责人:
  • 金额:
    $ 13.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-08 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Multidrug-resistant organisms (MDRO) pose a significant risk to public health. Infections with MDRO are associated with high mortality rates and healthcare costs, particularly related to hospital-acquired pneumonia. Current approaches to control and prevent transmission of these pathogens focus primarily on clinical testing of infectious patient isolates. This is costly, labor-intensive, and fails to account for asymptomatic carriage. Wastewater testing can overcome many of the limitations posed by patient-based surveillance by enabling cost-effective population-level data acquisition, which can subsequently be used to model and forecast infectious outbreaks. To date, wastewater-based testing has been successfully used for surveillance of pathogenic viruses, but barriers remain in applying this approach to MDRO. While pathogenic bacteria and antibiotic resistance genes (ARGs) have been detected in wastewater treatment plants, several factors currently limit the utility and accuracy of wastewater as a marker for overall burden and diversity of antibiotic resistance. Here, we aim to better operationalize metagenomic wastewater-based epidemiology by understanding the dynamics of multidrug-resistant bacteria during wastewater flow, as well as the relationship between wastewater and clinical detection of MDRO. First, we will design wastewater MDRO model systems by constructing plug-flow reactors and testing the effects of flow parameters such as hydraulic retention time, pH, and temperature, as well as antibiotic pressure, on the prevalence and diversity of MDRO and ARG genotypes. This will account for dynamics in growth rates and potential ARG exchange across species along the wastewater flow, which could significantly affect the accuracy of wastewater-based surveillance models. These bioreactor model systems will enable future experiments testing conditions relevant to specific MDRO species or wastewater streams. In Aim 2, we will take advantage of our ongoing longitudinal wastewater sampling at a major hospital center and the surrounding community to correlate MDRO in wastewater with clinical MDRO and existing patient surveillance cohorts. Through chromatin-linked metagenomics and long- read sequencing we will elucidate phylogenetic links between MDRO in hospital and community wastewater with infectious patient isolates, and potential differences in evolutionary patterns of MDRO in patient versus wastewater collections. Lastly, in Aim 3 we will interrogate different approaches to wastewater-based epidemiological modeling to estimate MDRO burden in a given community. We will contrast linear and nonlinear additive regression models with dynamic mathematical modeling approaches. We will incorporate wastewater flow parameters and community sociodemographics as well as molecular biomarker data, as normalization factors to improve model accuracy. Risk assessment techniques will be applied to these wastewater models to inform development of future public health decision making tools. If successful, the results of this study would enable wastewater surveillance as a tool to inform targeted mitigation strategies to prevent the spread of antibiotic multidrug-resistance.
耐多药生物(MDRO)对公共卫生构成重大风险。感染MDRO是

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Medini Annavajhala其他文献

Medini Annavajhala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Medini Annavajhala', 18)}}的其他基金

Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
  • 批准号:
    10449747
  • 财政年份:
    2022
  • 资助金额:
    $ 13.08万
  • 项目类别:

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
  • 批准号:
    BB/X010473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.08万
  • 项目类别:
    Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 13.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了