Estimation of High Frame Rate Digital Subtraction Angiography Sequences at Low Radiation Dose
低辐射剂量下高帧率数字减影血管造影序列的估计
基本信息
- 批准号:10450152
- 负责人:
- 金额:$ 8.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-13 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyArteriesBiomedical TechnologyBloodBlood capillariesBlood flowBrainCerebrovascular CirculationCerebrumClassificationClinicalComplexComputer softwareDataDevelopmentDiagnosisDiffusionDigital Subtraction AngiographyDiseaseDrainage procedureExposure toGoalsGoldHealthImageImaging DeviceImaging TechniquesInterventionLow Dose RadiationMapsMethodsMissionModelingOperative Surgical ProceduresOutcomePatientsPhaseProtocols documentationPublic HealthRadiationRadiation Dose UnitRadiation exposureResearchResolutionTechniquesTechnologyTestingUnited States National Institutes of HealthVeinsVenousVisualizationbasecerebral arterycerebral veincerebrovascularcerebrovascular surgeryclinical practiceexperimental studyfeedingimprovedinnovationmalformationneurovascularnew technologynovelroutine practice
项目摘要
Project Summary
Although Digital Subtraction Angiography (DSA) provides high resolution, dynamic imaging of blood flow
through the brain during arterial filling and venous drainage, its acquisition framerate is currently limited to 1-3
frames-per-seconds to minimize patients' exposure to radiation. Our long-term goal is to contribute toward the
development of DSA imaging techniques that are more easily interpretable. Our overall objectives in this
application are to (i) develop a new technology capable of producing high framerate DSA acquisition without
disrupting current clinical practice, (ii) evaluate the influence of framerate in the classification of entangled
feeding and draining vessels for the understanding of cerebrovascular malformations. Our central hypothesis is
that images from actual low framerate DSA sequences can be interpolated to generate new in-between images
at an arbitrary high framerate. The rationale for this project is that such technology will likely provide a clear
and interpretable imaging tool to clinicians that will facilitate diagnosis and planning of neurovascular
proceedings. The central hypothesis will be tested by pursuing two specific aims: 1) Develop a technique for
generating high framerate DSA sequences from low framerate ones and 2) Test high framerate DSA
sequences on entangled feeding and draining vessels in the presence of cerebral malformation. Under the first
aim, we will first decompose the sequence into arterial, capillary and venous phases. Next, we will generate a
diffusion map to constrain image interpolation. Finally, we will generate intermediate images using a non-linear
interpolation method based on contrast intensity and the pre-built diffusion map. For the second aim, we will
test our approach on entangled arteries and veins and evaluate its accuracy using various similarity and
corruptibility metrics. The proposed project is innovative, in our opinion, because it will be possible to
automatically generate high frame rate DSA sequences from low frame rate acquisitions while maintaining low
radiation exposure. Our solution does not alter the actual clinical routine, and is a software solution to a
hardware problem. The proposed project is significant, because it is expected to provide a solution by which a
high framerate DSA sequence can be generated using actual clinical acquisition protocols. The results are
expected to have an important positive impact because they will ultimately provide new opportunities for the
development of novel interpretation techniques to identify and treat cerebrovascular malformations.
项目摘要
虽然数字减影血管造影术(DSA)提供了高分辨率的血流动态成像,
在动脉充盈和静脉引流期间通过大脑,其采集帧速率目前限于1-3
以最大限度地减少患者暴露于辐射。我们的长期目标是为实现
发展更容易解释的DSA成像技术。我们在这方面的总体目标
应用的目的是(i)开发一种能够产生高帧率DSA采集的新技术,
扰乱目前的临床实践,(ii)评估帧速率在缠结分类中的影响
供血和引流血管,以了解脑血管畸形。我们的核心假设是
来自实际低帧率DSA序列的图像可以被内插以生成新的中间图像
在任意高帧率下。该项目的理由是,这种技术可能会提供一个明确的
和可解释的成像工具,以临床医生,将有助于诊断和规划神经血管
诉讼中心假设将通过追求两个具体目标进行测试:1)开发一种技术,
从低帧率DSA序列生成高帧率DSA序列,以及2)测试高帧率DSA
在存在脑畸形的情况下缠绕的供血和引流血管的序列。根据第一项
为了达到目的,我们首先将序列分解为动脉、毛细血管和静脉阶段。接下来,我们将生成一个
扩散图来约束图像插值。最后,我们将使用非线性
基于对比度强度和预先建立的扩散图的插值方法。第二个目标,我们将
在缠绕的动脉和静脉上测试我们的方法,并使用各种相似性评估其准确性,
腐败度量我们认为,拟议的项目是创新的,因为它将有可能
从低帧率采集自动生成高帧率DSA序列,同时保持低帧率
辐射暴露我们的解决方案不会改变实际的临床常规,是一个软件解决方案,
硬件问题。拟议的项目意义重大,因为预计它将提供一个解决方案,
可以使用实际临床采集协议来生成高帧率DSA序列。结果
预计将产生重要的积极影响,因为它们最终将为发展中国家提供新的机会。
开发新的解释技术,以识别和治疗脑血管畸形。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of High Framerate Digital Subtraction Angiography Sequences at Low Radiation Dose.
- DOI:10.1007/978-3-030-87231-1_17
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Haouchine N;Juvekar P;Xiong X;Luo J;Kapur T;Du R;Golby A;Frisken S
- 通讯作者:Frisken S
Learning Expected Appearances for Intraoperative Registration during Neurosurgery.
了解神经外科手术中术中注册的预期外观。
- DOI:10.1007/978-3-031-43996-4_22
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Haouchine,Nazim;Dorent,Reuben;Juvekar,Parikshit;Torio,Erickson;Wells3rd,WilliamM;Kapur,Tina;Golby,AlexandraJ;Frisken,Sarah
- 通讯作者:Frisken,Sarah
Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery.
- DOI:10.1109/tbme.2021.3113841
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazim Haouchine其他文献
Nazim Haouchine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazim Haouchine', 18)}}的其他基金
Vessel Identification and Tracing in DSA Image Series for Cerebrovascular Surgical Planning
用于脑血管手术计划的 DSA 图像系列中的血管识别和追踪
- 批准号:
10726103 - 财政年份:2023
- 资助金额:
$ 8.95万 - 项目类别:
Estimation of High Frame Rate Digital Subtraction Angiography Sequences at Low Radiation Dose
低辐射剂量下高帧率数字减影血管造影序列的估计
- 批准号:
10288682 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别:
相似海外基金
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
- 批准号:
22KJ2601 - 财政年份:2023
- 资助金额:
$ 8.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular identification of the oxygen sensor(s) in the fetal ductus arteriosus and pulmonary artery: an integrated multiomic comparison of mitochondria in vital fetal arteries with opposing oxygen responses
胎儿动脉导管和肺动脉中氧传感器的分子识别:对胎儿重要动脉中具有相反氧反应的线粒体进行综合多组学比较
- 批准号:
462691 - 财政年份:2022
- 资助金额:
$ 8.95万 - 项目类别:
Operating Grants
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2022
- 资助金额:
$ 8.95万 - 项目类别:
Discovery Grants Program - Individual
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10337722 - 财政年份:2022
- 资助金额:
$ 8.95万 - 项目类别:
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10590708 - 财政年份:2022
- 资助金额:
$ 8.95万 - 项目类别:
Pregnenolone constricts cerebral vascular arteries through the direct modulation of BK ion channels
孕烯醇酮通过直接调节 BK 离子通道收缩脑血管动脉
- 批准号:
10441131 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
DGECR-2021-00028 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别:
Discovery Launch Supplement
Association of brain temperature increase and cerebrospinal fluid dynamics in chronic brain ischemia due to main trunk occlusion of cerebral arteries
脑动脉主干闭塞所致慢性脑缺血脑温度升高与脑脊液动力学的关系
- 批准号:
21K09108 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10195510 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别:
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10405492 - 财政年份:2021
- 资助金额:
$ 8.95万 - 项目类别: