Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
基本信息
- 批准号:10450101
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATR geneAfferent NeuronsAxonBehaviorBehavioral AssayCHEK1 geneCell CycleCell physiologyCellular StressChromatinClinical TrialsCuesDNA DamageDNA Single Strand BreakDNA damage checkpointDataDrosophila genusExcisionFailureFunctional RegenerationGeneticGenetic ScreeningGoalsHomologous GeneImageImpairmentIn VitroInjuryIon ChannelLeadLinkLocationMechanical StressMechanoreceptorsMediatingModelingMolecularMultiple SclerosisNatural regenerationNerve DegenerationNerve RegenerationNeuraxisNeurodegenerative DisordersNeurologicNeurologic DysfunctionsNeuronal InjuryNeuronsOperative Surgical ProceduresParalysedPathologicPathway interactionsPatientsPatternPeripheralPharmaceutical PreparationsPharmacologyPhenotypePiezo ion channelsPopulationPropertyProtein-Serine-Threonine KinasesProteinsPublic HealthRecoveryRecovery of FunctionRefractoryRegenerative capacityRegenerative pathwayRegenerative researchRoleSignal PathwaySpinal Cord LesionsSpinal GangliaSpinal cord injurySystemTestingTherapeuticTouch sensationTranslatingTraumaWorkanti-canceraxon injuryaxon regenerationbasecancer therapycell typecentral nervous system injurycombinatorialdesigndisabilitydruggable targeteffective therapyendoplasmic reticulum stressextracellularflygain of functionimprovedinhibitorinsightknock-downloss of functionmechanical forcemechanical signalmechanical stimulusmolecular targeted therapiesmutantnerve injurynervous system disorderneuron regenerationnew therapeutic targetnociceptive responsenoveloverexpressionregenerativerelating to nervous systemrepairedresponsesciatic nerveyoung adult
项目摘要
Failure of damaged axons to regenerate and reestablish functional circuitry is the primary cause that results in
permanent disabilities after central nervous system (CNS) injury, and is also a major factor contributing to the non-reversible neurologic dysfunction seen in neurodegenerative diseases. Of approximately 1.9% of the U.S.
population with paralysis, some 1,275,000 are paralyzed as the result of a spinal cord injury (SCI). SCIs
frequently result in at least some incurable impairment even with the best possible treatment and patients with
complete injuries recover very little lost function. Under pathological situations such as multiple sclerosis, the
second most common neurological disorder leading to disability in young adults, failure of damaged axons to
regenerate contributes to neurologic abnormalities. Despite ample efforts in the past few decades, which have
led to the discoveries of extracellular factors that impede, and intrinsic pathways in mature neurons that diminish
the regenerative capacity of axons, effective therapies have not emerged given the fact that simply removing
those inhibitory cues confers limited regrowth and that our understanding of neurons’ intrinsic regenerative
properties still remains incomplete, indicating that additional regulatory machinery must be in place. This
highlights the urgent need to identify novel molecular targets for therapy.
With the goal to find novel factors essential for CNS axon regeneration, we have utilized a Drosophila sensory
neuron injury model that resembles mammalian injury at the phenotypical and molecular level in a candidate-
based genetic screen, and identified the Piezo-Atr (Ataxia telangiectasia and Rad3 related) pathway as inhibitors
for axon regeneration. This proposal aims to determine the cellular and molecular mechanisms underlying Piezo-
Atr’s function in flies and to elucidate the role of the mammalian Atr after peripheral or spinal cord injury. Atr is
an essential component of the DNA damage response and also responds to mechanical force. This pathway
has never been implicated in axon regeneration, and our study will thus provide exciting insights into the potential
links among axon injury, DNA damage response, mechanosensation and regeneration, and will open new
avenues of research for regeneration and spinal cord injury. Taking advantage of the power of fly genetics to identify novel factors and the mammalian injury model, this strategy offers a unique opportunity to gain insights
into the repertoire of regeneration regulators, which may drive novel treatments to promote recovery in patients
with neural injury or neurodegenerative diseases.
受损轴突再生和重建功能回路的失败是导致神经系统损伤的主要原因。
中枢神经系统(CNS)损伤后的永久性残疾,并且也是导致神经变性疾病中所见的不可逆神经功能障碍的主要因素。
在瘫痪的人口中,约有1,275,000人因脊髓损伤(SCI)而瘫痪。
经常导致至少一些无法治愈的损害,即使有最好的治疗和患者
完全损伤恢复很少失去的功能。在病理情况下,如多发性硬化症,
第二种最常见的神经系统疾病,导致年轻人残疾,受损的轴突无法
再生有助于神经异常。尽管在过去的几十年里,
导致了细胞外因子的发现,阻碍,和内在的途径,在成熟的神经元,减少
轴突的再生能力,有效的治疗方法还没有出现,因为简单地去除
这些抑制性信号赋予有限的再生,我们对神经元内在再生的理解
财产仍然不完整,这表明必须建立更多的监管机制。
突出了迫切需要确定新的分子靶点的治疗。
为了寻找中枢神经系统轴突再生所必需的新因子,我们利用果蝇感觉神经系统,
神经元损伤模型,在表型和分子水平上类似于哺乳动物损伤,
基于遗传筛选,并确定了压电Atr(共济失调毛细血管扩张和Rad 3相关)途径作为抑制剂
该建议旨在确定Piezo-100的细胞和分子机制,
Atr在果蝇中的功能,并阐明哺乳动物Atr在外周或脊髓损伤后的作用。
这是DNA损伤反应的重要组成部分,也对机械力有反应。
从来没有涉及轴突再生,因此我们的研究将提供令人兴奋的见解的潜力
轴突损伤,DNA损伤反应,机械感觉和再生之间的联系,并将开辟新的
再生和脊髓损伤的研究途径。利用苍蝇遗传学的力量来识别新的因素和哺乳动物损伤模型,这一策略提供了一个独特的机会,以获得见解
再生调节剂的全部功能,这可能会推动新的治疗方法,以促进患者的康复
神经损伤或神经退行性疾病。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-canonical role of the ATR pathway in axon regeneration as a mechanosensitive brake.
- DOI:10.4103/1673-5374.335807
- 发表时间:2022-11
- 期刊:
- 影响因子:6.1
- 作者:Li, Feng;Song, Yuanquan
- 通讯作者:Song, Yuanquan
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.
- DOI:10.7554/elife.57395
- 发表时间:2020-10-06
- 期刊:
- 影响因子:7.7
- 作者:Wang Q;Fan H;Li F;Skeeters SS;Krishnamurthy VV;Song Y;Zhang K
- 通讯作者:Zhang K
Mechanosensitive Ion Channels, Axonal Growth, and Regeneration.
- DOI:10.1177/10738584221088575
- 发表时间:2023-08
- 期刊:
- 影响因子:5.6
- 作者:Miles, Leann;Powell, Jackson;Kozak, Casey;Song, Yuanquan
- 通讯作者:Song, Yuanquan
Drosophila Laser Axotomy Injury Model to Investigate RNA Repair and Splicing in Axon Regeneration.
- DOI:10.1007/978-1-0716-3012-9_22
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila.
- DOI:10.1038/s41467-023-42306-2
- 发表时间:2023-10-14
- 期刊:
- 影响因子:16.6
- 作者:Trombley, Shannon;Powell, Jackson;Guttipatti, Pavithran;Matamoros, Andrew;Lin, Xiaohui;O'Harrow, Tristan;Steinschaden, Tobias;Miles, Leann;Wang, Qin;Wang, Shuchao;Qiu, Jingyun;Li, Qingyang;Li, Feng;Song, Yuanquan
- 通讯作者:Song, Yuanquan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanquan Song其他文献
Yuanquan Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanquan Song', 18)}}的其他基金
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10260386 - 财政年份:2018
- 资助金额:
$ 37.63万 - 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
- 批准号:
8753538 - 财政年份:2014
- 资助金额:
$ 37.63万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Grants Program - Individual