Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
基本信息
- 批准号:10260386
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATR geneAfferent NeuronsAxonBehaviorBehavioral AssayCHEK1 geneCell CycleCell physiologyCellular StressChromatinClinical TrialsCuesDNA DamageDNA Single Strand BreakDNA damage checkpointDataDrosophila genusExcisionFailureGeneticGenetic ScreeningGoalsHomologous GeneImageImpairmentIn VitroInjuryIon ChannelLeadLinkLocationMechanical StressMechanicsMechanoreceptorsMediatingModelingMolecularMultiple SclerosisNatural regenerationNerve DegenerationNerve RegenerationNeuraxisNeurodegenerative DisordersNeurologicNeurologic DysfunctionsNeuronal InjuryNeuronsOperative Surgical ProceduresParalysedPathologicPathway interactionsPatientsPatternPeripheralPharmaceutical PreparationsPharmacologyPhenotypePiezo ion channelsPopulationPropertyProtein-Serine-Threonine KinasesProteinsPublic HealthRecoveryRecovery of FunctionRefractoryRegenerative capacityRegenerative pathwayRegenerative researchRoleSignal PathwaySignal TransductionSpinal Cord LesionsSpinal GangliaSpinal cord injuryStimulusSystemTestingTherapeuticTouch sensationTranslatingTraumaWorkanti-canceraxon injuryaxon regenerationbasecancer therapycell typecentral nervous system injurycombinatorialdesigndisabilitydruggable targeteffective therapyendoplasmic reticulum stressextracellularflygain of functionimprovedinhibitor/antagonistinsightknock-downloss of functionmechanical forcemolecular targeted therapiesmutantnerve injurynervous system disorderneurotransmissionnew therapeutic targetnociceptive responsenoveloverexpressionregenerativerelating to nervous systemrepairedresponsesciatic nerveyoung adult
项目摘要
Failure of damaged axons to regenerate and reestablish functional circuitry is the primary cause that results in
permanent disabilities after central nervous system (CNS) injury, and is also a major factor contributing to the non-reversible neurologic dysfunction seen in neurodegenerative diseases. Of approximately 1.9% of the U.S.
population with paralysis, some 1,275,000 are paralyzed as the result of a spinal cord injury (SCI). SCIs
frequently result in at least some incurable impairment even with the best possible treatment and patients with
complete injuries recover very little lost function. Under pathological situations such as multiple sclerosis, the
second most common neurological disorder leading to disability in young adults, failure of damaged axons to
regenerate contributes to neurologic abnormalities. Despite ample efforts in the past few decades, which have
led to the discoveries of extracellular factors that impede, and intrinsic pathways in mature neurons that diminish
the regenerative capacity of axons, effective therapies have not emerged given the fact that simply removing
those inhibitory cues confers limited regrowth and that our understanding of neurons’ intrinsic regenerative
properties still remains incomplete, indicating that additional regulatory machinery must be in place. This
highlights the urgent need to identify novel molecular targets for therapy.
With the goal to find novel factors essential for CNS axon regeneration, we have utilized a Drosophila sensory
neuron injury model that resembles mammalian injury at the phenotypical and molecular level in a candidate-
based genetic screen, and identified the Piezo-Atr (Ataxia telangiectasia and Rad3 related) pathway as inhibitors
for axon regeneration. This proposal aims to determine the cellular and molecular mechanisms underlying Piezo-
Atr’s function in flies and to elucidate the role of the mammalian Atr after peripheral or spinal cord injury. Atr is
an essential component of the DNA damage response and also responds to mechanical force. This pathway
has never been implicated in axon regeneration, and our study will thus provide exciting insights into the potential
links among axon injury, DNA damage response, mechanosensation and regeneration, and will open new
avenues of research for regeneration and spinal cord injury. Taking advantage of the power of fly genetics to identify novel factors and the mammalian injury model, this strategy offers a unique opportunity to gain insights
into the repertoire of regeneration regulators, which may drive novel treatments to promote recovery in patients
with neural injury or neurodegenerative diseases.
损伤的轴突无法再生细胞并重建功能正常的神经电路,这是导致手术结果不佳的主要原因。
永久性残疾-在中枢神经系统(CNS)损伤后,神经功能障碍也是导致神经退行性疾病中常见的不可逆转的神经功能障碍的一个主要因素。约占美国人口的1.9%。
患有脊髓损伤的人群中,约有1,275,000人因脊髓损伤综合征(SCI)而瘫痪。
经常会导致至少一些无法治愈的神经损伤,甚至是即使是最好的治疗方法,也会导致患者无法治愈。
完全性损伤可以恢复很少的功能,但在多发性硬化症等病理性疾病的情况下,患者可能会出现这种情况。
第二种最常见的神经系统疾病是导致青壮年残疾的原因,主要是受损轴突的失败。
再生是导致神经系统异常的主要原因。尽管在过去的几十年里做出了大量的努力,但我们已经做到了这一点。
这导致了一些细胞外因子的新发现,这些细胞外因子可能会阻碍、抑制和改变可能会减弱的成熟神经细胞中的内在细胞通路。
轴突的再生能力,以及有效的治疗方法还没有出现,因为事实是,它只是在移除。
这些抑制性神经线索赋予我们有限的再生能力,使我们无法更好地理解神经元的内在和再生能力。
房地产仍然不完整,这表明必须建立更多的监管机构。
强调了他们迫切需要更多地确定用于治疗的新的分子靶点。
随着我们的目标是找到新的影响因素和中枢神经系统轴突再生的关键因素,我们已经利用了一种新的果蝇的感官。
神经元损伤模型在其表型特征和分子水平上与哺乳动物神经损伤相似--
基于基因筛查,研究人员确定Piezo--ATR途径(共济失调和毛细血管扩张相关)和RAD3途径为药物抑制物。
对于轴突的再生。这项新的提案旨在进一步确定潜在的Piezo-Piezo的主要细胞结构和分子生物学机制。
ATR在外周神经或脊髓损伤后的重要功能,旨在阐明人类ATR在外周神经或脊髓损伤后的重要作用。
生物DNA的一个重要组成部分--损伤和反应--也会对机械作用力做出反应。这条重要的途径。
我们的研究工作从未涉及轴突再生,因此将为我们提供更令人兴奋的深入了解这一潜力的机会。
轴突损伤、DNA损伤和反应、机械传感和神经再生之间的联系将开启新的篇章。
动物再生和脊髓损伤的研究途径。通过利用苍蝇遗传学的强大功能,进一步识别新的遗传因素,建立最新的哺乳动物脊髓损伤模型,这一研究战略为我们提供了一个独特的研究机会,可以进一步获得更多的见解。
纳入监管机构的医疗再生计划,这可能会推动新的医疗疗法,以更好地促进患者的康复。
有神经损伤或神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanquan Song其他文献
Yuanquan Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanquan Song', 18)}}的其他基金
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10450101 - 财政年份:2018
- 资助金额:
$ 37.63万 - 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
- 批准号:
8753538 - 财政年份:2014
- 资助金额:
$ 37.63万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 37.63万 - 项目类别:
Discovery Grants Program - Individual