Comprehensive Characterization of Breast Tissue Using Multi-modal MRI

使用多模态 MRI 全面表征乳腺组织

基本信息

  • 批准号:
    10453305
  • 负责人:
  • 金额:
    $ 15.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-03 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Diffusion-weighted MRI (DWI) has become a pillar of clinical MRI with its uniqueness to probe tissue properties well beyond the conventional MRI can achieve with its millimetric resolution. Most DWI applications rely on apparent diffusion coefficient (ADC) which has been associated with tissue cellularity1,2. However, the comprehensive properties of tissue cannot be adequately revealed by a single measurement3. Recent publications indicated these hidden properties can be probed using specific portions of the b-value “spectrum” in DWI4. For example, intravoxel incoherent motion model5–7 with low-b-values can characterize micro- vascularity without contrast agent, presenting a potential for complementing dynamic contrast-enhanced MRI (DCE-MRI)8. High-b-value non-Gaussian models9–24 can probe microstructures as in the case with continuous- time random walk model17,19,21,25,26 which can reflect tissue micro-structural heterogeneity, thus enable studying microstructures beyond cellularity and vascularity. Recognizing the complexity of the breast tissue, the breast imaging community has shown an increasing interest in incorporating advanced DWI into their breast MRI protocols27. However, expansion of advanced DWI to the breast has not been fully achieved28,29 due to two major challenges. Firstly, commercial single-shot echo-planar imaging (ss-EPI) is prone to image distortion, which is exacerbated in the breast due to off-center setting30–37. Secondly, an integrated approach with multiple MRI- based metrics has not been established for breast tissue characterization38,39. The main goal of this project is to develop two imaging tools to enable a comprehensive characterization of breast tissue: (1) a novel, distortion- resilient, and time-efficient DWI acquisition technique, and (2) an integrated multi-modal MRI analysis framework. Our overarching motivation is to bring the advancements in multi-high-b-value DWI to the breast. The hypothesis is that breast neoplasm can be evaluated by characterizing tissue cellularity, vascularity, and heterogeneity collectively; and these properties can be comprehensively probed by utilizing a set of DWI parameters from the entire spectrum of b-values together with DCE-MRI metrics. The specific aims are: 1. To develop a novel, distortion-resilient, and time-efficient pulse sequence, Steer-PROP for breast DWI – SPREAD – that will enable DWI with a full spectrum of b-values from 0 to 3000 s/mm2. 2. To establish MRI-based metrics for characterizing tissue cellularity, vascularity, and heterogeneity; and to develop an integrated multi-modal MRI analysis framework – TERMINAL – for the breast. 3. To demonstrate a potential application of SPREAD and TERMINAL in the context of predicting response to neoadjuvant chemotherapy (NAC) in breast cancer. This project will provide novel tools to enable DWI acquisition with a full b-value spectrum and DWI analysis for assessing malignancy and evaluating treatment response in breast cancer. Successful completion of the project will serve as a prototype for the expansion of advanced DWI into breast imaging.
摘要 磁共振弥散加权成像(DWI)以其独特的组织探测能力成为临床MRI的支柱 这些特性远远超出了传统核磁共振成像的毫米分辨率。大多数DWI应用程序 依赖于表观扩散系数(ADC),这与组织细胞密度1,2有关。然而, 组织的综合特性不能通过单一的测量来充分揭示。近期 出版物指出,这些隐藏的属性可以用b值“谱”的特定部分来探测。 在DWI4中。例如,具有低b值的体素内非相干运动模型5-7可以表征微 不含造影剂的血管显示可作为动态增强MRI的补充 (DCE-MRI)8.高b值非高斯模型9-24可以探测微结构,就像在连续- 时间随机游走模型17、19、21、25、26能够反映组织微观结构的异质性,从而使研究成为可能 细胞和血管外的微结构。认识到乳腺组织的复杂性,乳房 成像界对将先进的DWI应用于乳腺MRI表现出了越来越大的兴趣 议定书27。然而,由于两个主要原因,晚期弥散加权成像尚未完全扩展到乳房28,29 挑战。首先,商用单次激发回波平面成像(ss-EPI)容易产生图像失真,即 由于偏离中心位置30-37,导致乳房恶化。第二,多核磁共振的综合方法-- 基于乳房组织特征的指标尚未建立38,39。这个项目的主要目标是 为了开发两种成像工具来实现对乳房组织的全面表征:(1)一种新的、扭曲的- 坚韧、省时的DWI采集技术,以及(2)集成的多模式MRI分析框架。 我们的主要动机是将多个高b值DWI的进步带到胸前。 假设乳腺肿瘤可以通过表征组织细胞密度、血管密度、 和异质性,这些属性可以通过利用一组DWI来综合探测 来自整个b值频谱的参数以及DCE-MRI指标。具体目标是: 1.开发一种新颖的、抗失真的、省时的乳房DWI脉冲序列-Steer-Prop 扩展-这将使DWI具有从0到3000 S/mm2的全频谱b值。 2.建立基于MRI的测量方法,用于表征组织细胞密度、血管密度和异质性; 为乳房开发一个集成的多模式MRI分析框架-终端。 3.在预测对……的反应的背景下,展示扩散和终端的潜在应用 乳腺癌的新辅助化疗(NAC) 该项目将提供新的工具,以实现全b值谱和DWI的DWI采集 评价乳腺癌恶性程度和疗效的分析。成功完成 该项目的实施将作为将先进的弥散加权成像扩展到乳房成像的原型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muge M Karaman其他文献

Muge M Karaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muge M Karaman', 18)}}的其他基金

Comprehensive Characterization of Breast Tissue Using Multi-modal MRI
使用多模态 MRI 全面表征乳腺组织
  • 批准号:
    10617363
  • 财政年份:
    2022
  • 资助金额:
    $ 15.99万
  • 项目类别:

相似海外基金

Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
  • 批准号:
    23K08495
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
  • 批准号:
    10719777
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
  • 批准号:
    22KJ2498
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Learners to LeAders in benign Urology, benign Nephrology, and non-Cancer Hematology
良性泌尿外科、良性肾脏病学和非癌症血液学领域的学习者和领导者
  • 批准号:
    10726042
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
  • 批准号:
    10607151
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
Development of a medical device to resolve benign esophageal stricture by heating and traction
开发通过加热和牵引解决良性食管狭窄的医疗设备
  • 批准号:
    23H03765
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of benign/malignant differentiation method for thyroid follicular tumor using organoids
利用类器官开发甲状腺滤泡性肿瘤良恶性鉴别方法
  • 批准号:
    23K08075
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of p53 Engagement and Action at the Benign-to-Malignant Transition in Sporadic Tumorigenesis
p53在散发性肿瘤发生良性向恶性转变中的参与和作用机制
  • 批准号:
    10720034
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
  • 批准号:
    2306943
  • 财政年份:
    2023
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Standard Grant
Towards Achieving Zero Emissions through the use of an Environmentally Benign Non-Regenerable Solvent to Capture CO2 from Large Point Source Emitters for Direct Permanent Storage in Geological Formation or Usage in Accelerated Curing of Ready-mix Con
通过使用环境友好的不可再生溶剂从大型点源排放器捕获二氧化碳,直接永久储存在地质构造中或用于预拌混凝土的加速固化,从而实现零排放
  • 批准号:
    RGPIN-2022-03431
  • 财政年份:
    2022
  • 资助金额:
    $ 15.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了