A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
基本信息
- 批准号:10452354
- 负责人:
- 金额:$ 23.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectApoptosisBehaviorBehavioralBehavioral SymptomsBiochemicalBioenergeticsBiological ProcessBiologyBrainBrain DiseasesBuffersCalciumCellsCellular StructuresCitric Acid CycleClinicalCognitionComplexDefectDevelopmentDifferentiation and GrowthDiseaseDrosophila genusElectron TransportEmotionsEnzymesEtiologyFMR1FaceFibroblastsFoundationsFragile X SyndromeFunctional disorderFutureGeneticGenetic TranslationGoalsHealthHealthcareHomeostasisHumanHyperphagiaImageInduced pluripotent stem cell derived neuronsInheritedIntellectual functioning disabilityInvestigationKnowledgeLinkMediatingMental disordersMessenger RNAMetabolicMetabolismMitochondriaModelingMolecularNeurobehavioral ManifestationsNeurodegenerative DisordersNeuronsObesityOrganellesOutputPathogenesisPathogenicityPathologicPatient CarePatientsPharmacologyPhysiologicalPositioning AttributeProcessProductionProteinsRNARNA BindingRNA-Binding ProteinsRegulationRoleSeizuresSignal TransductionSiteSocial BehaviorStructureSymptomsSynapsesSynaptic TransmissionSynaptic plasticityTestingTranslationsTreatment FailureVoltage-Dependent Anion Channelautism spectrum disorderbehavioral phenotypingdFMR1 geneeffective therapyflyin vivoinduced pluripotent stem cellmitochondrial dysfunctionneural circuitneurophysiologyneuropsychiatric disordernovelnovel therapeutic interventionprotein functionprotein protein interactiontreatment effecttreatment strategyuptake
项目摘要
Fragile X syndrome (FXS) is the most prevalent form of inherited intellectual disability and the primary genetic
cause of autism. FXS is caused by loss of expression of the Fmr1 gene encoding Fragile X Mental Retardation
Protein (FMRP), a protein with RNA-binding activity thought to act primarily as a translational regulator. In
addition to intellectual disability, FXS patients present behavioral and cognitive symptoms, irregular physical
features, and metabolic symptoms. The prevailing hypothesis of FXS pathogenesis posits FMRP as a
promiscuous RNA-binding protein targeting hundreds of brain RNAs, with altered translation of these mRNA
targets as the underlying cause of the synaptic and neural circuit defects and behavioral phenotypes seen in
FXS. However, the recent clinical failures of treatment strategies targeting some of the key translational
substrates of FMRP, and the current lack of effective treatment option for FXS, argue that investigations of new
biological function of FMPR and new pathogenic mechanisms of FXS are warranted.
Mitochondria are dynamic and complex organelles with essential roles in many aspects of biology, from
energy production and intermediary metabolism to intracellular signaling and apoptosis. These broad functions
position mitochondrion as a central player in human health. In neurons, mitochondria and synapses are intimately
linked. In addition to their central role in bioenergetics, mitochondria are also critically important for maintaining
cellular Ca2+ homeostasis. Ca2+ uptake by mitochondria helps buffer cytosolic Ca2+ transients arising from
neuronal activation, protecting against the detrimental effects of Ca2+ influx. The ER-mitochondria contact site
(ERMCS) are increasingly appreciated as key structures regulating mito-Ca2+ homeostasis, and there is an
emerging role of altered ERMCS and mito-Ca2+ in the pathogenesis of neurodegenerative diseases. Whether
ERMCS and its role in mito-Ca2+ homeostasis is affected in major neuropsychiatric diseases such as FXS is not
known. The goal of this proposal is to test the central hypothesis that FMRP acts physically at ERMCS to direct
Ca2+ signaling between organelles, and that defects in this process contribute to the etiology of FXS. To test this
hypothesis, we propose to achieve the following Specific Aims in this exploratory project: Aim 1. Examine defects
in ERMCS formation in the Drosophila dFmr1 model and FXS patient-derived models. Aim 2. Test the
physiological roles of ERMCS proteins that direct mito-Ca2+ homeostasis in mediating FMRP function. By
providing evidence for the involvement of ERMCS and mito-Ca2+ in mediating FMRP function at the organellar,
synaptic, and organismal levels, these studies will lay the foundation for future mechanistic studies on the
regulation and function of FMRP in normal synaptic and neuronal processes underlying brain function, cognition,
emotion, and social behavior. Results from this study promise to significantly advance our understanding of the
fundamental roles of mitochondria and Ca2+ signaling in FXS and various related mental disorders and offer
novel and rational strategies to deliver health care for patients suffering from these devastating mental illnesses.
脆弱的X综合征(FXS)是遗传障碍的最普遍的形式和主要遗传
自闭症的原因。 FXS是由编码脆弱X智力低下的FMR1基因表达的丧失引起的
蛋白质(FMRP),一种具有RNA结合活性的蛋白质,主要充当转化调节剂。在
在智力障碍中,FXS患者表现出行为和认知症状,身体不规则
特征和代谢症状。 FXS发病机理的普遍假设将FMRP视为一个
靶向数百个脑RNA的混杂RNA结合蛋白,这些mRNA的翻译改变了
目标是突触和神经回路缺陷和行为表型的根本原因
FXS。但是,针对某些关键翻译的治疗策略的最新临床失败
FMRP的底物以及FXS目前缺乏有效的治疗选择,认为对新的调查
必须掌握FMPR的生物学功能和FXS的新致病机制。
线粒体是动态且复杂的细胞器,在生物学的许多方面具有重要作用,
能源生产和中介代谢细胞内信号传导和凋亡。这些广泛的功能
将线粒体定位为人类健康的中心参与者。在神经元中,线粒体和突触密切相关
链接。除了其在生物能学中的核心作用外,线粒体对于维持至关重要
细胞CA2+稳态。线粒体的Ca2+摄取有助于缓冲胞质Ca2+瞬变。
神经元激活,防止Ca2+流入的有害作用。 ER-线粒体接触站点
(ERMC)越来越多地被视为调节MITO-CA2+稳态的关键结构,并且有一个
ERMCS和MITO-CA2+改变的新兴作用在神经退行性疾病的发病机理中。无论
ERMC及其在MITO-CA2+稳态中的作用在主要神经精神疾病(例如FXS)中受到影响
已知。该提案的目的是检验FMRP在ERMC上进行物理作用以指导的中心假设
细胞器之间的Ca2+信号传导以及此过程中的缺陷有助于FX的病因。测试这个
假设,我们建议在此探索性项目中实现以下特定目标:目标1。检查缺陷
在果蝇DFMR1模型和FXS患者衍生模型中的ERMC形成中。目标2。测试
ERMCS蛋白的生理作用,该蛋白在介导FMRP功能中指导MITO-CA2+稳态。经过
提供证据表明ERMC和MITO-CA2+参与细胞器中介导FMRP功能的证据,
突触和生物水平,这些研究将为未来的机械研究奠定基础
FMRP在正常突触和神经元过程中的调节和功能,认知,认知,
情感和社会行为。这项研究的结果有望大大提高我们对
线粒体和CA2+信号在FXS和各种相关精神障碍中的基本作用,并提供
为患有这些毁灭性精神疾病的患者提供医疗保健的新颖和理性策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingwei Lu其他文献
Bingwei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingwei Lu', 18)}}的其他基金
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10612482 - 财政年份:2022
- 资助金额:
$ 23.61万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10301076 - 财政年份:2021
- 资助金额:
$ 23.61万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10470218 - 财政年份:2021
- 资助金额:
$ 23.61万 - 项目类别:
Understanding SHRF, an RNA exosome-linked disease with multi-organ involvement
了解 SHRF,一种与 RNA 外泌体相关的多器官受累疾病
- 批准号:
10305689 - 财政年份:2020
- 资助金额:
$ 23.61万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10317296 - 财政年份:2020
- 资助金额:
$ 23.61万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10441283 - 财政年份:2019
- 资助金额:
$ 23.61万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
9979767 - 财政年份:2019
- 资助金额:
$ 23.61万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10657388 - 财政年份:2019
- 资助金额:
$ 23.61万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10208725 - 财政年份:2019
- 资助金额:
$ 23.61万 - 项目类别:
相似国自然基金
金属硫蛋白MT1介导癌-睾丸抗原CT23影响肝癌恶性生物学行为的研究
- 批准号:81760424
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
亚致死剂量吡虫啉对蜜蜂脑神经细胞凋亡影响研究
- 批准号:31402148
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
泛素连接酶RNF138对结直肠癌细胞生物学行为的影响及分子机制研究
- 批准号:81302150
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
LASS2表达对人膀胱癌细胞EJ凋亡和生物学行为的影响及机制
- 批准号:81260374
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
endocan对胃癌细胞生物学行为的影响及其机制的研究
- 批准号:81201907
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别:
Examining the role of immune activation in transposon-triggered sterility.
检查免疫激活在转座子触发的不育中的作用。
- 批准号:
10748032 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别:
The TGF-Beta/MUC4 Signaling Axis in Circulating Tumor Cells of Metastatic Breast Cancer
转移性乳腺癌循环肿瘤细胞中的 TGF-β/MUC4 信号轴
- 批准号:
10751169 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别:
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
- 批准号:
10580269 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别: