Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
基本信息
- 批准号:9979767
- 负责人:
- 金额:$ 34.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAgingAmyotrophic Lateral SclerosisAnimal ModelAnimalsApoptosisArchitectureBindingBiochemicalBioenergeticsBiologicalBiologyBuffersC9ORF72CalciumCell divisionCell physiologyCellsComplexCrista ampullarisCytosolDegenerative DisorderDenervationDevelopmentDipeptidesDiseaseDrosophila genusFunctional disorderGeneticGenetic ModelsGenetic ScreeningGoalsHealthInner mitochondrial membraneLeadLinkMaintenanceMedicineMembraneMembrane Structure and FunctionMetabolismMitochondriaMitochondrial EncephalomyopathiesMitochondrial MyopathiesModelingMolecularMolecular GeneticsMolecular TargetMotionMotor Neuron DiseaseMuscleMuscle DevelopmentMuscle MitochondriaMuscle functionMyopathyNeuromuscular JunctionNotch Signaling PathwayNumbnessOrganellesOuter Mitochondrial MembranePINK1 genePathogenesisPathologyPathway interactionsPeptide HydrolasesPlayProcessProteinsProteomicsQuality ControlRegulationRibosomesRoleSignal PathwaySignal TransductionSiteSkeletal MuscleStructureSynapsesSystemTissuesToxic effectTranslationsage relatedage related neurodegenerationexperimental studyflygene productinsightmitochondrial dysfunctionmuscle degenerationmuscle formmuscular structureneuromuscularnormal agingnotch proteinnovelnovel therapeuticsparkin gene/proteinproteostasissarcopeniaskeletal muscle wastingstem cellstool
项目摘要
Project Summary
Muscle is a contractile tissue that generates forces and motions vital for animal survival. The molecular and cellular
mechanisms governing its structural and functional integrity are not well understood. Selective dysfunction and
degeneration of neuromuscular tissues have been observed in disease conditions featuring mitochondrial
abnormality, emphasizing the particular importance of mitochondria to the functionality and integrity of muscle
tissues. Mitochondria play important roles in cellular bioenergetics as well as other essential aspects of cellular
physiology. The mitochondrial processes that are essential for the structural and functional integrity of skeletal
muscle, and how these processes are regulated in health and disease are poorly defined. It is becoming
increasingly clear that fundamental mechanisms underlying the development, function, and maintenance of skeletal
muscle are conserved across metazoans. Thus genetic model organisms are poised to make significant
contributions to our understanding of these mechanisms. In our previous studies, we have used Drosophila as a
model to demonstrate the importance of Numb/Notch signaling and asymmetric progenitor cell division during
muscle development, and PINK1/Parkin-directed mitochondrial quality control in skeletal muscle maintenance. We
have also used the fly neuromuscular junction (NMJ) as a model to dissect synaptic mechanisms involved in age-
related neurodegenerative diseases. In our most recent studies, we have found that protein quality control in the
mitochondrial intermembrane space (IMS) is important for skeletal muscle function and maintenance. We found that
dipeptide repeats (DPRs) derived from unconventional translation of the GGGGCC (G4C2) hexanucleotide repeat
expansion in C9ORF72, the most common genetic cause of amyotrophic lateral sclerosis (ALS) called c9ALS,
disrupt mitochondrial function by altering IMS proteostasis and inner membrane (IM) architecture. Our genetic
modifier screens identified a number of signaling pathways in mitigating this ALS-related muscle pathology. The goal
of this proposal is to use proteomic, molecular genetic, and cell biological tools to define the mechanism of action of
the identified genetic pathways, in an effort to achieve a holistic view of the regulation and function of mitochondrial
IM architecture in skeletal muscle function and maintenance. Two Specific Aims will help us reach this goal. In Aim
1, we will examine the molecular mechanisms of how c9ALS disease gene product disrupts muscle mitochondrial
IMS/IM structure and function. Novel genetic tools will be used to perform ultrastructural studies and find the
interactome of DPR within these structures. In Aim 2, we will delineate the cellular quality control mechanisms that
maintain IMS/IM integrity by restraining the synthesis or promoting the metabolism of DPR. The role of these quality
control mechanisms in maintaining mitochondrial and skeletal muscle structure and function during normal aging will
also be examined. These studies will significantly advance our understanding of the role of mitochondria in
maintaining skeletal muscle structure and function. Results from this study promise to inform the development of
novel and rational muscle-targeting medicine for ALS and conditions such as sarcopenia.
项目概要
肌肉是一种收缩组织,可产生对动物生存至关重要的力和运动。分子和细胞
控制其结构和功能完整性的机制尚不清楚。选择性功能障碍和
在以线粒体为特征的疾病中观察到神经肌肉组织的退化
异常,强调线粒体对肌肉功能和完整性的特殊重要性
组织。线粒体在细胞生物能学以及细胞的其他重要方面发挥着重要作用
生理。对于骨骼的结构和功能完整性至关重要的线粒体过程
肌肉,以及这些过程在健康和疾病中如何调节,目前还不清楚。它正在成为
越来越清楚的是,骨骼发育、功能和维护的基本机制
肌肉在后生动物中是保守的。因此,遗传模型生物体有望做出重大贡献
有助于我们理解这些机制。在我们之前的研究中,我们使用果蝇作为
模型证明 Numb/Notch 信号传导和不对称祖细胞分裂过程中的重要性
肌肉发育,以及骨骼肌维护中 PINK1/Parkin 指导的线粒体质量控制。我们
还使用果蝇神经肌肉接头(NMJ)作为模型来剖析与年龄相关的突触机制
相关的神经退行性疾病。在我们最近的研究中,我们发现蛋白质质量控制
线粒体膜间隙(IMS)对于骨骼肌功能和维持很重要。我们发现
源自 GGGGCC (G4C2) 六核苷酸重复序列的非常规翻译的二肽重复序列 (DPR)
C9ORF72 的扩增是肌萎缩侧索硬化症 (ALS) 称为 c9ALS 的最常见遗传原因,
通过改变 IMS 蛋白质稳态和内膜 (IM) 结构来破坏线粒体功能。我们的基因
修饰筛选确定了许多缓解这种 ALS 相关肌肉病理的信号通路。目标
该提案的目的是使用蛋白质组学、分子遗传学和细胞生物学工具来定义
已确定的遗传途径,以努力全面了解线粒体的调节和功能
骨骼肌功能和维护中的 IM 架构。两个具体目标将帮助我们实现这一目标。瞄准
1、我们将研究c9ALS疾病基因产物如何破坏肌肉线粒体的分子机制
IMS/IM结构和功能。新型遗传工具将用于进行超微结构研究并找到
这些结构中 DPR 的相互作用组。在目标 2 中,我们将描述细胞质量控制机制
通过抑制DPR的合成或促进代谢来维持IMS/IM的完整性。这些品质的作用
正常衰老过程中维持线粒体和骨骼肌结构和功能的控制机制将
也予以检查。这些研究将显着增进我们对线粒体在
维持骨骼肌的结构和功能。这项研究的结果有望为以下领域的发展提供信息
针对 ALS 和肌肉减少症等疾病的新型合理的肌肉靶向药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingwei Lu其他文献
Bingwei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingwei Lu', 18)}}的其他基金
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10452354 - 财政年份:2022
- 资助金额:
$ 34.43万 - 项目类别:
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10612482 - 财政年份:2022
- 资助金额:
$ 34.43万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10301076 - 财政年份:2021
- 资助金额:
$ 34.43万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10470218 - 财政年份:2021
- 资助金额:
$ 34.43万 - 项目类别:
Understanding SHRF, an RNA exosome-linked disease with multi-organ involvement
了解 SHRF,一种与 RNA 外泌体相关的多器官受累疾病
- 批准号:
10305689 - 财政年份:2020
- 资助金额:
$ 34.43万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10317296 - 财政年份:2020
- 资助金额:
$ 34.43万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10441283 - 财政年份:2019
- 资助金额:
$ 34.43万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10657388 - 财政年份:2019
- 资助金额:
$ 34.43万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10208725 - 财政年份:2019
- 资助金额:
$ 34.43万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




