Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
基本信息
- 批准号:10317296
- 负责人:
- 金额:$ 31.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-11 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2Administrative SupplementAffectAgingAlzheimer&aposs DiseaseAmyloid beta-Protein PrecursorAnimal ModelArchitectureBiogenesisBrainCOVID-19COVID-19 morbidityCOVID-19 susceptibilityCellsCessation of lifeChinaChromosome 21ComplexCongenital Heart DefectsCrista ampullarisDefectDevelopmentDiseaseDown SyndromeExhibitsFunctional disorderGene ProteinsGenesGeneticGoalsHomeostasisHumanIndividualInfectionInner mitochondrial membraneIntellectual functioning disabilityLeadLungLung diseasesMaintenanceMediatingMitochondriaMitochondrial MyopathiesMolecularMuscleMuscle CellsMuscle FibersMuscle MitochondriaMuscle hypotoniaMuscular AtrophyMusculoskeletal SystemMyalgiaNatureNeurologicNeuromuscular DiseasesObstructionOrganellesOuter Mitochondrial MembranePathogenicityPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPredispositionPresenile Alzheimer DementiaPreventionProteinsQuality ControlRNARegulationResearchRespiratory SystemRibosomesRoleSARS coronavirusSevere Acute Respiratory SyndromeSignal TransductionSiteSkeletal MuscleStructureSymptomsSystemTestingTherapeuticTherapeutic AgentsTherapeutic EffectTissuesViralViral ProteinsVirusbasebody systemeffective therapyinduced pluripotent stem cellinterestmitochondrial dysfunctionmortalityneuromuscularneuromuscular systemnoveloverexpressionpandemic diseaseparent grantpatient populationrespiratorysarcopeniaskeletaltargeted agenttherapeutic evaluationtranslocase
项目摘要
COVID-19 is an escalating pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Since its breakout in late 2019 it has spread rapidly worldwide and killed more than 600,000 people as
of August 1st, 2020. There are currently no effective treatment or prevention options. Although SARS-CoV-2
causes severe respiratory disease, it also affects other organ systems, including the musculoskeletal system
where myalgias, muscle loss, and muscle dysfunction are common sequelae. Down Syndrome (DS) is the
most common genetic form of intellectual and developmental disabilities caused by triplication of chromosome
21. DS patients also exhibit co-occurring conditions including early-onset Alzheimer's disease (AD), congenital
heart defects, respiratory and pulmonary obstructions, and muscular dysfunction. These underlying conditions
make DS patients particular susceptible to COVID-19 complications. The molecular mechanisms giving rise to
DS pathologies and making DS patients particularly vulnerable to COVID-19 remain elusive. Mitochondrial
dysfunction is widely observed in DS and other pathological conditions affecting the neuromuscular systems
such as primary mitochondrial myopathy, sarcopenia, and AD. In the parent grant, we seek to elucidate
fundamental mechanisms underlying the function of mitochondrial structures in maintaining skeletal muscle
integrity. We identified mitochondrial contact site and cristae organizing system (MICOS) as a critical site
targeted by toxic proteins causing neuromuscular diseases. We also identified cellular quality control systems
and pharmacological agents that protect against the action of such toxic proteins. In this Supplement Project,
we will test the hypothesis that SARS-CoV-2 infection of muscle cells disrupts mitochondrial MICOS structure
and function in normal subjects and exacerbates mitochondrial defects in DS patients. This hypothesis is
based on strong premises: 1) ACE2, a key factor needed for cell entry of SARS-CoV-2, is expressed in skeletal
muscle cells; 2) SARS-CoV-2 RNA is predicted to be enriched in mitochondria; 3) Certain SARS-CoV-2
encoded proteins interact with the mitochondrial TOM/TIM complex, which is known to associate with MICOS;
4) Some SARS-CoV-2 encoded proteins interact with cellular quality control pathways important for
mitochondrial biogenesis and homeostasis; 5) We have observed muscle mitochondrial defects in an animal
model of DS. In Aim 1, we will use human induced pluripotent stem cell (iPSC)-derived muscle cells to test the
effect of SARS-CoV-2 viral proteins on mitochondrial structure/function in general and MICOS in particular in
DS muscle cells. In Aim 2, we will use iPSC-derived muscle cells to test the therapeutic effect of genetic and
pharmacological agents targeting mitochondrial quality control pathways. It is anticipated that by the end of the
project we will have offered an explanation of the susceptibility of DS patients to SARS-CoV-2 and tested
potential host-directed drugs in protecting against the pathogenic effect of SARS-CoV-2.
Covid-19是由严重急性呼吸综合征冠状病毒2(SARS-
COV-2)。自2019年底突破以来,它已在全球范围内迅速传播,并杀死了60万人
2020年8月1日。目前没有有效的治疗或预防选择。虽然SARS-COV-2
引起严重的呼吸系统疾病,还会影响其他器官系统,包括肌肉骨骼系统
肌痛,肌肉丧失和肌肉功能障碍是常见的后遗症。唐氏综合症(DS)是
染色体的一式三份引起的智力和发育障碍的最常见遗传形式
21. DS患者还表现出同时发生的疾病,包括早期发作的阿尔茨海默氏病(AD),先天性
心脏缺陷,呼吸道和肺部障碍以及肌肉功能障碍。这些基本条件
使DS患者特别容易受到COVID-19并发症的影响。产生的分子机制
DS病理和使DS患者特别容易受到COVID-19的影响仍然难以捉摸。线粒体
在DS和其他影响神经肌肉系统的病理状况中广泛观察到功能障碍
例如原发性线粒体肌病,肌肉减少症和AD。在父母赠款中,我们寻求阐明
线粒体结构在保持骨骼肌方面功能的基本机制
正直。我们将线粒体接触位点和Cristae组织系统(MICOS)确定为关键部位
由有毒蛋白靶向引起神经肌肉疾病。我们还确定了细胞质量控制系统
和防止这种有毒蛋白质作用的药理剂。在这个补充项目中,
我们将检验以下假设:SARS-COV-2肌肉细胞的感染会破坏线粒体MICOS结构
DS患者的正常受试者和加剧线粒体缺陷的功能。这个假设是
基于坚固的前提:1)ACE2是SARS-COV-2细胞进入所需的关键因素,以骨骼表示
肌肉细胞; 2)预计SARS-COV-2 RNA将富集在线粒体中; 3)某些SARS-COV-2
编码的蛋白质与线粒体TOM/TIM复合物相互作用,该复合物已知与MICOS相关。
4)一些SARS-COV-2编码蛋白与细胞质量控制途径相互作用
线粒体生物发生和稳态; 5)我们观察到动物中的肌肉线粒体缺陷
DS的模型。在AIM 1中,我们将使用人类诱导的多能干细胞(IPSC)衍生的肌肉细胞来测试
SARS-COV-2病毒蛋白对一般的线粒体结构/功能的影响,尤其是MICOS
DS肌肉细胞。在AIM 2中,我们将使用IPSC衍生的肌肉细胞来测试遗传和
靶向线粒体质量控制途径的药理剂。可以预料到结束
我们将提供DS患者对SARS-COV-2的敏感性并进行测试的项目
潜在的宿主指导药物可防止SARS-COV-2的致病作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingwei Lu其他文献
Bingwei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingwei Lu', 18)}}的其他基金
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10452354 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10612482 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10301076 - 财政年份:2021
- 资助金额:
$ 31.63万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10470218 - 财政年份:2021
- 资助金额:
$ 31.63万 - 项目类别:
Understanding SHRF, an RNA exosome-linked disease with multi-organ involvement
了解 SHRF,一种与 RNA 外泌体相关的多器官受累疾病
- 批准号:
10305689 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10441283 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
9979767 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10657388 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10208725 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
相似国自然基金
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MMRRC COVID-19 variant testing in humanized mouse models
MMRRC 在人源化小鼠模型中进行 COVID-19 变异测试
- 批准号:
10412858 - 财政年份:2021
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of long-term taste loss in post-acute sequelae of COVID-19
COVID-19急性后遗症导致长期味觉丧失的机制
- 批准号:
10554842 - 财政年份:2021
- 资助金额:
$ 31.63万 - 项目类别:
Epitope focusing to the receptor binding motif for a universal coronavirus vaccine
通用冠状病毒疫苗受体结合基序的表位
- 批准号:
10265730 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别:
Administrative Supplement to R21: Mechanism and in vivo activity of novel glycan-based therapy against flavivirus endothelial permeability and vascular leak
R21 的行政补充:针对黄病毒内皮通透性和血管渗漏的新型聚糖疗法的机制和体内活性
- 批准号:
10265787 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别: