Compensatory Mitochondrial Protective Mechanisms Against Oxidative Stress in PD
PD 中氧化应激的补偿性线粒体保护机制
基本信息
- 批准号:10453241
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmericanAnimal ModelBiogenesisBiological ModelsBrain-Derived Neurotrophic FactorCREB1 geneCell Culture TechniquesCell NucleusCell SurvivalCell modelCellsChemicalsCognitive deficitsComplexDiseaseDisease ProgressionDisease modelExhibitsGenetic TranscriptionGoalsHistologicHistone DeacetylaseHumanInflammatory ResponseMediatingMitochondriaModelingMolecularMusNatureNerve DegenerationNeurodegenerative DisordersNeuronsNeurotoxinsNuclearNuclear AccidentsNuclear ProteinNuclear TranslocationOutcomes ResearchOxidative StressParkinson DiseasePathologicPathway interactionsPeptidesPhosphotransferasesPredispositionProcessProtein KinaseProtein translocationProtein-Serine-Threonine KinasesQuality ControlReportingResearchRoleSignal PathwaySignal TransductionStressSystemTestingTimeTranscriptional RegulationUp-Regulationconditional knockoutdopaminergic neuroneffective therapyfactor Aimprovedinnovationmitochondrial dysfunctionmitopark mousemotor deficitmouse modelmtTF1 transcription factorneurochemistryneuroinflammationneuronal survivalnigrostriatal systemnoveloxidative damagepreclinical efficacypreventprogramsprotein activationrelating to nervous systemresponsestemtherapeutic targettranscription factortranslational approachtranslational potentialtreatment strategy
项目摘要
Abstract
The complex and prolonged disease course exhibited by Parkinson’s disease (PD) first starts with non-motor
disturbances and then slowly progresses to mild-to-moderate motor deficits, ultimately inflicting severe motor
and cognitive deficits. Although pathophysiological mechanisms underlying various stages of the disease have
yet to be characterized, both mitochondrial dysfunction (MD) and neural oxidative stress (OS) have been
identified as key pathological correlates in the progressive neurodegenerative process in PD. While studying key
oxidative signaling mechanisms that regulate susceptibility of the nigrostriatal dopamin(DA)ergic system to MD
and oxidative damage, we unexpectedly discovered that protein kinase D1 (PKD1) is highly expressed in nigral
DAergic neurons and that the kinase is rapidly activated during the early stages of oxidative insult to protect
DAergic neurons against oxidative damage. Our mechanistic studies revealed that activated PKD1 rapidly
translocates to both mitochondria and the nucleus of DAergic neurons. Our preliminary studies show that
activated PKD1 likely enhances the transcription of key neuro-adaptive oxidative mechanisms involving
enhanced PGC1-α, TFAM and BDNF signaling pathways. Thus, the goal of this study is to elucidate
mitochondrial/nuclear events governing the PKD1-mediated compensatory protective response using cell and
animal models of PD. The overarching hypothesis of our proposal is that the pro-survival kinase PKD1 is rapidly
activated in nigral DAergic neurons during the initial stage of an oxidative insult and quickly translocates to
mitochondria and nuclei to initiate cell survival signaling pathways. Its nuclear translocation initiates key pro-
survival transcriptional machinery responsible for PGC1-α, TFAM and BDNF upregulation, leading to enhanced
mitochondrial biogenesis and neurotrophic support in DAergic neurons. Mitochondrial translocation of PKD1
improves mitochondrial function by regulating mitochondrial quality control (MQC). Thus, PKD1 serves as a key
‘compensatory adaptive switch’ in nigral DAergic neurons. To test this, we will systematically pursue the following
specific aims: (i) characterize PKD1 activation and nuclear/mitochondrial translocation and its functional
relevance in cell culture and animal models of PD; (ii) characterize the downstream pro-survival signaling
pathways activated by PKD1 mitochondrial/nuclear translocation in DAergic neurons; and (iii) validate PKD1 as
a therapeutic target of PD and examine the translational potential of a novel PKD1 activator. We will use multiple
model systems and state-of-the-art cellular, histological and neurochemical approaches to achieve these specific
aims. Our multifaceted approach to harness the PKD1 adaptive signaling mechanisms that promote DAergic
neuronal survival will enable us to devise a novel translational strategy capable of intervening early in the course
of disease progression in PD.
摘要
帕金森病(PD)表现出复杂而漫长的病程,首先从非运动性开始
运动障碍,然后慢慢发展为轻度至中度运动障碍,最终造成严重的运动障碍。
和认知缺陷尽管疾病的各个阶段的病理生理机制已经被证实,
线粒体功能障碍(MD)和神经氧化应激(OS)尚未被表征,
被确定为PD中进行性神经退行性过程中的关键病理学相关因素。学习Key
调节黑质纹状体多巴胺(DA)能系统对MD易感性的氧化信号传导机制
和氧化损伤,我们意外地发现蛋白激酶D1(PKD 1)在黑质中高度表达,
DA能神经元和激酶在氧化损伤的早期阶段被迅速激活,以保护DA能神经元。
DA能神经元抗氧化损伤。我们的机制研究表明,激活PKD 1迅速,
易位到DA能神经元的线粒体和细胞核。我们的初步研究表明,
活化的PKD 1可能增强关键神经适应性氧化机制的转录,
增强PGC 1-α、TFAM和BDNF信号通路。因此,本研究的目的是阐明
线粒体/核事件控制PKD 1介导的代偿性保护反应,
PD的动物模型。我们的建议的首要假设是,促生存激酶PKD 1是迅速
在氧化损伤的初始阶段在黑质DA能神经元中激活,并迅速易位到
线粒体和细胞核启动细胞存活信号通路。它的核转位启动了关键的亲-
负责PGC 1-α,TFAM和BDNF上调的存活转录机制,导致增强的
DA能神经元的线粒体生物发生和神经营养支持。PKD 1的线粒体易位
通过调节线粒体质量控制(MQC)改善线粒体功能。因此,PKD 1作为一个关键,
黑质DA能神经元中的“补偿性适应性开关”。为了验证这一点,我们将系统地进行以下工作:
具体目标:(i)表征PKD 1活化和核/线粒体易位及其功能
在细胞培养和PD动物模型中的相关性;(ii)表征下游促存活信号传导
DA能神经元中PKD 1线粒体/核易位激活的通路;和(iii)验证PKD 1作为
PD的治疗靶点,并检查新型PKD 1激活剂的翻译潜力。我们将使用多个
模型系统和最先进的细胞,组织学和神经化学方法,以实现这些特定的
目标。我们利用PKD 1适应性信号传导机制的多方面方法,
神经元存活将使我们能够设计一种新的翻译策略,能够在病程早期进行干预,
PD的疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHI KANTHASAMY其他文献
ARTHI KANTHASAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHI KANTHASAMY', 18)}}的其他基金
Role of Prokineticin 2 in Metal Neurotoxicity
Prokineticin 2 在金属神经毒性中的作用
- 批准号:
10587599 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Compensatory Mitochondrial Protective Mechanisms Against Oxidative Stress in PD
PD 中氧化应激的补偿性线粒体保护机制
- 批准号:
10609521 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10631159 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10551785 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10445079 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
Exosomes and Neuroinflammation in Parkinsons Disease
外泌体和帕金森病的神经炎症
- 批准号:
9207021 - 财政年份:2015
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8469590 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8273762 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8658161 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8843981 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




