Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
基本信息
- 批准号:10452714
- 负责人:
- 金额:$ 36.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino Acid SubstitutionAnabolismApoptosisB-LymphocytesBiochemicalBiochemistryCRISPR/Cas technologyCancer ModelCancer cell lineCell LineageCell ProliferationCell SurvivalCellsChemistryChimerismComplexCre-LoxPCytosolCytotoxic ChemotherapyDNA Polymerase IDNA Polymerase IIDNA Polymerase IIIDNA-Directed RNA PolymeraseDataDependenceDevelopmentDiphosphatesEconomicsEnzymatic BiochemistryEnzymesFeedbackFoundationsFutureGene ExpressionGeneticGenetic TranscriptionGenetically Engineered MouseGrowthHematopoieticHomoHomologous GeneHumanImmunologicsIndividualIntelligenceKnockout MiceLeadLesionLinkLymphomaLymphomagenesisMYC geneMalignant NeoplasmsMetabolicMetabolismMicroscopyModelingMolecularMolecular BiologyMultienzyme ComplexesMultiple MyelomaMusNatural regenerationNormal CellNormal tissue morphologyNucleic AcidsNucleotide BiosynthesisNucleotidesOncogenicOutputPathway interactionsPatientsPentosephosphate PathwayPhenotypePhysiologyProductionProliferatingPropertyPurinesPyrimidineRNA chemical synthesisRefractoryResearchResolutionRiboseRibose-Phosphate PyrophosphokinaseRoleRouteStable Isotope LabelingStructural ModelsStructureTestingTherapeuticTissuesToxic effectWorkanti-cancerbasec-myc Genescancer cellcytotoxicdesignenzyme activitygenetic approachinorganic phosphateliquid chromatography mass spectrometryloss of functionmouse modelmutantnext generationnovelnucleic acid biosynthesisnucleotide metabolismoverexpressionprogramspyridinerational designsingle moleculestoichiometrytherapeutically effectivetumortumor metabolism
项目摘要
PROJECT SUMMARY
Many cancers are currently treated by cytotoxic chemotherapies that exploit those cancers' dependence on
enhanced nucleotide biosynthesis. However, the cytotoxic properties which make these compounds so
efficacious in killing cancer cells also wreak havoc on normal proliferating cells and tissues. In order to
understand how to exploit this vulnerability more effectively and more safely, we must focus our efforts on
targets that are specifically required by cancer cell, but not normal cell, proliferation and survival. My
discoveries have identified one such target – the enzyme phosphoribosyl pyrophosphate synthetase 2
(PRPS2). PRPS2, and its homolog PRPS1, generate a critical precursor necessary for producing all
nucleotides and function as a `molecular throttle' capable of increasing or decreasing the rate at which these
genetic building blocks are made. This proposal seeks to unravel the molecular basis for this selectivity
through use of metabolic flux analysis, elegant structure/function studies, and bioorthogonal chemistry and
molecular biology approaches. Our studies will open up new avenues for understanding the metabolic
vulnerabilities of cancer cells and may lead to intelligently-designed rational therapeutic strategies of the future.
We will conduct our studies using models of MYC-driven lymphoma and myeloma, using both genetically-
engineered mouse models and human cancer cell lines. Importantly, MYC has been characterized as the
transcriptional engine of cancer and its ability to stimulate nucleotide and nucleic acid production are signature
features of its pro-growth anabolic program necessary to drive malignancies in the B cell lineage. Using our
genetic approaches that block PRPS2 function in MYC overexpressing cells, we can leverage this dependency
to decipher the mechanistic basis for the deregulation of nucleotide metabolism in MYC-overexpressing cancer
cells and uncover novel connections between critical nodes in the nucleotide metabolism network. For
example, our proposed studies will elucidate the economics of nucleotide metabolism by determining how
disrupting nucleotide supply affects the machineries it fuels, and vice-versa. Collectively, the proposed studies
will be transformative in our understanding of the roles of these key molecules in the normal and cancer
setting, and provide a new conceptual paradigm which can be the foundation for the development of the next
generation of safer, more effective precision-based therapies and approaches.
项目摘要
目前,许多癌症都通过细胞毒性化疗来治疗,这些化疗利用了这些癌症对药物的依赖性。
增强核苷酸生物合成。然而,使这些化合物如此的细胞毒性特性
有效杀死癌细胞也对正常增殖细胞和组织造成严重破坏。为了
为了了解如何更有效、更安全地利用这一漏洞,我们必须集中精力,
癌细胞而非正常细胞、增殖和存活特异性需要的靶标。我
已经发现了一种这样的靶-磷酸核糖焦磷酸合成酶2
(PRPS2)。PRPS 2及其同源物PRPS 1产生产生所有必需的关键前体,
核苷酸和功能作为一个“分子节流阀”能够增加或减少的速度,这些
基因构建模块被制造出来。这一建议试图解开这种选择性的分子基础
通过使用代谢通量分析,优雅的结构/功能研究,和生物正交化学,
分子生物学方法。我们的研究将为理解代谢
癌症细胞的脆弱性,并可能导致未来智能设计的合理治疗策略。
我们将使用MYC驱动的淋巴瘤和骨髓瘤模型进行我们的研究,使用遗传-
工程小鼠模型和人类癌细胞系。重要的是,MYC被描述为
癌症的转录引擎及其刺激核苷酸和核酸产生的能力是标志性的
其促生长合成代谢程序的特征是在B细胞谱系中驱动恶性肿瘤所必需的。使用我们
基因方法阻断PRPS 2在MYC过表达细胞中的功能,我们可以利用这种依赖性
解读MYC过度表达癌症中核苷酸代谢失调的机制基础
细胞,并揭示核苷酸代谢网络中关键节点之间的新联系。为
例如,我们提出的研究将阐明核苷酸代谢的经济学,通过确定如何
中断核苷酸供应会影响它所驱动的机器,反之亦然。总体而言,拟议的研究
将改变我们对这些关键分子在正常和癌症中的作用的理解,
设置,并提供一个新的概念范式,可以为下一个发展的基础,
产生更安全、更有效的基于精确度的疗法和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Cunningham其他文献
Tom Cunningham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Cunningham', 18)}}的其他基金
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10225501 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10671540 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Defining the biological roles of PRPS isozymes in normal and diseased settings
定义 PRPS 同工酶在正常和患病环境中的生物学作用
- 批准号:
10609812 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Defining the biological roles of PRPS isozymes in normal and diseased settings
定义 PRPS 同工酶在正常和患病环境中的生物学作用
- 批准号:
10394225 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
相似海外基金
Phenotypic consequences of a modern human-specific amino acid substitution in ADSL
ADSL 中现代人类特异性氨基酸取代的表型后果
- 批准号:
24K18167 - 财政年份:2024
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Estimation of stability and functional changes due to amino acid substitution using molecular simulations
使用分子模拟估计氨基酸取代引起的稳定性和功能变化
- 批准号:
20H03230 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the mechanisms of prion protein conversion caused by an amino acid substitution in glycosylphosphatidylinositol anchoring signal peptide
阐明糖基磷脂酰肌醇锚定信号肽中氨基酸取代引起的朊病毒蛋白转化机制
- 批准号:
16K18790 - 财政年份:2016
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Amino acid substitution without genetic modification
无需基因改造的氨基酸替代
- 批准号:
15H05491 - 财政年份:2015
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Study on PSII hydrogen bond networks by exhaustive amino acid substitution
穷举氨基酸取代研究PSII氢键网络
- 批准号:
15K07110 - 财政年份:2015
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the effect of HCV propagationa and IFN sensitivity by amino acid substitution in interferon sensitivity-determining region.
阐明干扰素敏感性决定区氨基酸取代对 HCV 传播和干扰素敏感性的影响。
- 批准号:
26860309 - 财政年份:2014
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The analysis of the restriction of amino acid substitution on the hemagglutinin molecule of influenza A virus
甲型流感病毒血凝素分子氨基酸取代限制性分析
- 批准号:
14370104 - 财政年份:2002
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changes in the Substrate Specificities of Farnesyl Diphosphate Synthase by a Single Amino Acid Substitution
单一氨基酸取代对法尼基二磷酸合酶底物特异性的变化
- 批准号:
12680587 - 财政年份:2000
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses of the Relationship between Amino Acid Substitution and Phenotype of the Tail Sheath Protein of Bacteriophage T4
噬菌体T4尾鞘蛋白氨基酸取代与表型关系分析
- 批准号:
02680125 - 财政年份:1990
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Hypothesis: Both appearance and disappearance of viruses are controlled by the accumulation of amino acid substitution in receptor binding domain
假设:病毒的出现和消失都是由受体结合域氨基酸取代的积累控制的
- 批准号:
02454184 - 财政年份:1990
- 资助金额:
$ 36.71万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




