Computational analysis of complex genetic interactions
复杂遗传相互作用的计算分析
基本信息
- 批准号:10455028
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesBiologicalBiological AssayBiophysical ProcessCRISPR screenCellsCommunicable DiseasesComplexComputer AnalysisComputer softwareDNA SequenceDataData AnalysesData SetDevelopmentDrug resistanceEnzymesExposure toGeneticGenetic EpistasisGenotypeGoalsHuman GenomeImmuneImmune EvasionIndividualMeasurementMeasuresMethodsModelingMolecular BiologyMutagenesisMutationOrganismPathogenicityPerformancePhenotypeProteinsReporterResearchStatistical ModelsTechniquesTherapeutic antibodiesUncertaintyVariantWorkbasebiological systemscombinatorialcomputerized toolsdesignemerging antibiotic resistanceexperimental studygenetic elementgenetic varianthigh dimensionalityimprovedmutation screeningnew technologypreventprogramstool
项目摘要
Project Summary / Abstract
How does the DNA sequence of an organism (genotype) determine its form and function (phenotype)?
New technologies such as massively parallel reporter assays (MPRAs), deep mutational scanning, and
combinatorial CRISPR screens have the potential to expose the genotype-phenotype relationship at an
unprecedented level of detail by measuring phenotypes for tens of thousands to millions of genotypes in a
single experiment. However, interpreting the results of these experiments is difficult because the space of
genotypes is intrinsically high-dimensional and combinations of mutations often interact in complicated ways.
My research program is focused on developing new computational tools to analyze data from these high-
throughput experiments, with the goals of (1) identifying the major qualitative features of the genotype-
phenotype relationship in specific biological systems, (2) explaining how these qualitative features arise from
underlying developmental, cell biological and biophysical mechanisms, (3) being able to accurately predict the
phenotypes of unmeasured genotypes, and (4) quantifying the uncertainty in these predictions.
My primary research objective over the next five years is to develop new computational and statistical
techniques capable of capturing higher-order epistasis, that is, genetic interactions that occur between three or
more mutations. Although contemporary high-throughput mutagenesis experiments reveal that these higher-
order interactions are extremely prevalent, we currently lack general, principled statistical models capable of
modeling such interactions. My research group is currently developing two different, but related, methods for
modeling these interactions. While both methods display state-of-the-art predictive performance on smaller
datasets with tens to hundreds of thousands of genotypes, substantial work remains to adapt these methods to
the scale of the largest available datasets, which contain measurements for millions of genotypes. In the
coming years, we plan to build these methods into an integrated framework for analyzing complex genetic
interactions, complete with quantification of uncertainty, tools for biological interpretation and exploratory data
analysis, and practical software that can be used and interpreted by both computational biologists and
experimentalists.
High-throughput mutagenesis experiments have the potential to transform molecular biology by
providing a general-purpose tool for interrogating the genotype-phenotype relationship of an arbitrary genetic
element. Important applications include mapping adaptive paths to immune escape and drug resistance
variants in infectious disease, designing improved antibodies and enzymes, and genomic variant interpretation.
Development of the computational tools proposed here will further these goals by providing a principled and
functional framework for understanding the complex genetic interactions revealed in these experiments.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Martin McCandlish其他文献
David Martin McCandlish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Martin McCandlish', 18)}}的其他基金
Computational analysis of complex genetic interactions
复杂遗传相互作用的计算分析
- 批准号:
10675737 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant