Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
基本信息
- 批准号:10457251
- 负责人:
- 金额:$ 17.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAge of OnsetAsthmaBasic ScienceBiologicalBiologyChildChronicClinicalClinical DataClinical TreatmentCollaborationsCommunitiesComplexDataDisadvantagedDiseaseEnvironmental Risk FactorEpidemiologyEthnic OriginEtiologyGeneticGenetic HeterogeneityGenetic RiskGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHeritabilityHeterogeneityIndividualInstitutesInterventionLearningLinkMachine LearningMedicineMentorshipMethodsModelingMolecularPathologyPathway interactionsPersonsPhenotypePlayPopulationPrecision therapeuticsPredispositionProxyPulmonologyResearchResearch PersonnelRiskRisk FactorsRoleSample SizeSmokingStatistical MethodsStructureTestingTissuesTranslational ResearchWorkasthma exacerbationbiobankcell typechronic respiratory diseaseclinical heterogeneityclinical subtypesclinically significantcohortcomorbiditydisease classificationfunctional genomicsgene environment interactiongenetic associationgenome-widegenomic dataimprovedinnovationmachine learning methodmachine learning modelneutrophilnoveloptimal treatmentspolygenic risk scoreprecision medicineprofessorprogramsrespiratorysexstatisticstooltraittranslational medicine
项目摘要
Project Summary/Abstract
Asthma is a chronic respiratory disease affecting about 340 million people worldwide, yet its causal biology,
environmental risks, key cell types, and optimal treatments remain under-characterized. This difficulty is partly
due to clinical heterogeneity, as different risk factors drive asthma for different people. Asthma subtype studies
have already begun to reveal important aspects of this heterogeneity. However, asthma subtypes remain
nascent and ambiguous and have not yet realized their potential utility for scientific studies and precision
treatments. In particular, genetics has not been fully exploited for asthma subtyping, though it has a unique
ability to assess the causal biological significance of subtypes and can identify key cell types; conversely, prior
subtyping studies are susceptible to coincidental subtypes that are not directly relevant to asthma biology.
Furthermore, prior studies have used basic methods which are liable to bias and low power. To address these
limitations, we will develop a powerful and robust framework to pinpoint and genetically characterize
asthma subtypes, and we will broadly apply it in large, deeply phenotyped, and diverse cohorts. Our study
will identify novel subtypes and their demographic, genomic, cellular, and clinical etiologies, which can suggest
precision treatments and improve power and interpretation in basic and translational research. Our work will
improve genetic prediction of asthma, particularly in understudied populations. Finally, our approach and
freely released methods will provide a broad template for complex trait subtyping.
To accomplish these goals, we will study four large biobanks, which offer unprecedented sample size, clinical
depth, and demographic diversity. We will use functional genomics to link genetic heterogeneity to causal
and cell type-specific molecular mechanisms. We will build on our prior machine learning tools to
identify subtypes, quantify their genetic and clinical significance, and infer their dominant cell types. Our
methods are unique by correcting for confounding population structure, which is crucial for genetic subtyping:
spurious genetic associations led prior studies to propose severely biased and regressive nosology.
A key goal of this proposal is the PI’s retraining in asthma biology, pulmonology, and functional genomics. This
will be achieved by close mentorship from Professors Carole Ober, Julian Solway, Yoav Gilad, and Matthew
Stephens, as well as didactic courses in the UChicago Department of Medicine and Institute for Translational
Medicine. This retraining will maximize the biomedical impact of our study by enabling the PI to deeply connect
quantitative results to core facets of asthma pathology and will establish the PI as an independent asthma
researcher who can optimally apply his statistics and machine learning background to tackle essential
biomedical hurdles.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Dahl其他文献
Andrew Dahl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Dahl', 18)}}的其他基金
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
- 批准号:
10713965 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
- 批准号:
10684675 - 财政年份:2021
- 资助金额:
$ 17.3万 - 项目类别:
Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
- 批准号:
10191398 - 财政年份:2021
- 资助金额:
$ 17.3万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists