Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
基本信息
- 批准号:10684675
- 负责人:
- 金额:$ 17.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAge of OnsetAsthmaBasic ScienceBiologicalBiologyChildChronicClinicalClinical DataClinical TreatmentCollaborationsCommunitiesComplexDataDisadvantagedDiseaseDisparity populationEnvironmental Risk FactorEpidemiologyEthnic OriginEtiologyGeneticGenetic HeterogeneityGenetic RiskGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHeritabilityHeterogeneityIndividualInequityInterventionLearningLinkMachine LearningMedicineMentorshipMethodsModelingMolecularPathologyPathway interactionsPersonsPhenotypePlayPopulationPrecision therapeuticsPredispositionProxyPulmonologyResearchResearch PersonnelRiskRisk FactorsRoleSample SizeSmokingStatistical MethodsStructureTestingTissuesTrainingTranslational ResearchWorkbiobankcell typechronic respiratory diseaseclinical heterogeneityclinical subtypesclinically significantcohortcomorbiditydisease classificationfunctional genomicsgene environment interactiongenetic associationgenetic predictorsgenome-widegenomic dataimprovedinnovationmachine learning methodmachine learning modelneutrophilnoveloptimal treatmentspolygenic risk scoreprecision medicineprofessorprogramsrespiratorysexstatisticstheoriestooltraittranslational medicine
项目摘要
Project Summary/Abstract
Asthma is a chronic respiratory disease affecting about 340 million people worldwide, yet its causal biology,
environmental risks, key cell types, and optimal treatments remain under-characterized. This difficulty is partly
due to clinical heterogeneity, as different risk factors drive asthma for different people. Asthma subtype studies
have already begun to reveal important aspects of this heterogeneity. However, asthma subtypes remain
nascent and ambiguous and have not yet realized their potential utility for scientific studies and precision
treatments. In particular, genetics has not been fully exploited for asthma subtyping, though it has a unique
ability to assess the causal biological significance of subtypes and can identify key cell types; conversely, prior
subtyping studies are susceptible to coincidental subtypes that are not directly relevant to asthma biology.
Furthermore, prior studies have used basic methods which are liable to bias and low power. To address these
limitations, we will develop a powerful and robust framework to pinpoint and genetically characterize
asthma subtypes, and we will broadly apply it in large, deeply phenotyped, and diverse cohorts. Our study
will identify novel subtypes and their demographic, genomic, cellular, and clinical etiologies, which can suggest
precision treatments and improve power and interpretation in basic and translational research. Our work will
improve genetic prediction of asthma, particularly in understudied populations. Finally, our approach and
freely released methods will provide a broad template for complex trait subtyping.
To accomplish these goals, we will study four large biobanks, which offer unprecedented sample size, clinical
depth, and demographic diversity. We will use functional genomics to link genetic heterogeneity to causal
and cell type-specific molecular mechanisms. We will build on our prior machine learning tools to
identify subtypes, quantify their genetic and clinical significance, and infer their dominant cell types. Our
methods are unique by correcting for confounding population structure, which is crucial for genetic subtyping:
spurious genetic associations led prior studies to propose severely biased and regressive nosology.
A key goal of this proposal is the PI’s retraining in asthma biology, pulmonology, and functional genomics. This
will be achieved by close mentorship from Professors Carole Ober, Julian Solway, Yoav Gilad, and Matthew
Stephens, as well as didactic courses in the UChicago Department of Medicine and Institute for Translational
Medicine. This retraining will maximize the biomedical impact of our study by enabling the PI to deeply connect
quantitative results to core facets of asthma pathology and will establish the PI as an independent asthma
researcher who can optimally apply his statistics and machine learning background to tackle essential
biomedical hurdles.
项目总结/摘要
哮喘是一种慢性呼吸道疾病,影响全球约3.4亿人,但其因果生物学,
环境风险、关键细胞类型和最佳治疗方法仍然没有得到充分表征。这种困难部分是
由于临床异质性,因为不同的风险因素导致不同的人患哮喘。哮喘亚型研究
已经开始揭示这种异质性的重要方面。然而,哮喘亚型仍然存在
它们是新生的、模糊的,尚未实现其在科学研究和精确测量方面的潜在效用。
治疗。特别是,遗传学还没有被充分利用哮喘亚型,虽然它有一个独特的,
能够评估亚型的因果生物学意义,并能够识别关键细胞类型;相反,
亚型研究易受与哮喘生物学不直接相关的巧合亚型的影响。
此外,以前的研究使用的基本方法,易于偏见和低功率。解决这些
局限性,我们将开发一个强大而强大的框架,以查明和遗传特征
哮喘亚型,我们将广泛应用于大,深表型,和不同的队列。我们的研究
将确定新的亚型及其人口统计学,基因组学,细胞学和临床病因学,这可能表明
精确的治疗和提高权力和解释基础和翻译研究。我们的工作将
改善哮喘的遗传预测,特别是在研究不足的人群中。最后,我们的方法和
自由发布的方法将为复杂的特征分型提供广泛的模板。
为了实现这些目标,我们将研究四个大型生物库,这些生物库提供了前所未有的样本量,临床
深度和人口多样性。我们将使用功能基因组学将遗传异质性与因果关系联系起来,
和细胞类型特异性分子机制。我们将在我们之前的机器学习工具的基础上,
识别亚型,量化其遗传和临床意义,并推断其主要细胞类型。我们
方法是独特的,通过校正混杂的群体结构,这对遗传分型至关重要:
虚假的遗传关联导致先前的研究提出了严重偏见和倒退的疾病分类学。
该提案的一个关键目标是PI在哮喘生物学、肺病学和功能基因组学方面的再培训。这
将在Carole Ober、Julian Solway、Yoav Gilad和Matthew教授的密切指导下实现
斯蒂芬斯,以及在医学和翻译研究所UChicago部门的教学课程
药这种再培训将通过使PI能够深入联系,最大限度地发挥我们研究的生物医学影响
定量结果的核心方面的哮喘病理学,并将建立PI作为一个独立的哮喘
研究人员谁可以最佳地应用他的统计和机器学习背景,以解决基本的
生物医学障碍
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Dahl其他文献
Andrew Dahl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Dahl', 18)}}的其他基金
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
- 批准号:
10713965 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
- 批准号:
10191398 - 财政年份:2021
- 资助金额:
$ 17.3万 - 项目类别:
Characterizing individual- and subtype-specific risk factors and treatments in asthma
描述哮喘的个体和亚型特异性危险因素和治疗方法
- 批准号:
10457251 - 财政年份:2021
- 资助金额:
$ 17.3万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.3万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 17.3万 - 项目类别:
Studentship