Tumor-targeted delivery and cell internalization of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy
用于图像引导纳米颗粒增强放射治疗的治疗诊断钆纳米颗粒的肿瘤靶向递送和细胞内化
基本信息
- 批准号:10457237
- 负责人:
- 金额:$ 18.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcidityAntibodiesAntibody TherapyAutopsyBiodistributionBiological AssayBiological MarkersBreast Cancer ModelCell Culture TechniquesCell DeathCell SurvivalCell membraneCellsChelating AgentsClinicalClinical ChemistryClinical ResearchComet AssayComplementComputer SimulationConformal RadiotherapyDNA DamageDataDevelopmentDiagnosticDoseElectronsEndocytosisFoundationsFranceGadoliniumGamma-H2AXGeometryGoalsHematologyHistopathologyHourImageImaging problemIn VitroInductively Coupled Plasma Mass SpectrometryInjectionsLaboratory ResearchLeadLinkMagnetic Resonance ImagingMalignant neoplasm of lungMeasuresMicroscopicMitochondrial DNAModelingMusNeoplasm MetastasisNormal tissue morphologyNuclearOrganPathway interactionsPatientsPeptidesPermeabilityPharmacologyPhysiologicalPropertyRadiationRadiation therapyRadiation-Sensitizing AgentsRadiosensitizationResearchResearch DesignResistanceRoentgen RaysSignal TransductionSolid NeoplasmStructureSystemTechniquesTestingTherapeuticTimeTissuesToxic effectTranslatingTranslationsWeightWorkXenograft procedureaggressive therapybasebiophysical modelbiophysical propertiescancer cellcell killingcellular imagingcellular targetingclinical applicationclinical translationclinically relevantexperimental studyhuman modelimage guidedimaging propertiesimprovedin vivointerestmetallicitymicroscopic imagingmouse modelnanoparticlenanoparticle deliveryneoplastic cellnovelp53-binding protein 1particlepre-clinicalpreventquantitative imagingresidenceresponsesimulationtargeted biomarkertargeted deliverytheranosticstranslational studytreatment planningtreatment responsetumortumor growthtumor microenvironmenttumor specificityuptake
项目摘要
The long-term objective of this project is to overcome some of the major hurdles that prevent the clinical
translation of metallic nanoparticle (NP) radiosensitization in radiation therapy (RT). Studies have shown that
the passive, enhanced permeability and retention (EPR) effect itself is not sufficient to deliver the amount of
intratumoral and intracellular NPs needed for in vivo radiosensitization with an affordable amount of injected NPs
and the conventional NPs are cleared rapidly (~minutes) in vivo. Imaging the in vivo NP biodistribution for
quantitative RT treatment planning is also an unsolved critical issue. Actively targeting and internalization into
cancer cells by gadolinium (Gd) NPs conjugated to pH-Low Insertion Peptides (pHLIPs) have the potential to
serve the dual purpose of enhancing uptake of NPs in tumor cells and selective, quantitative imaging by MRI.
pHLIP-GdNPs can actively target solid tumors’ unavoidable acidic microenvironment, which is not present in
healthy tissues. Therefore, it is superior to other biomarker targeting, such as antibody targeting, which can
become nonspecific and be evaded by selection of non-expressing subclones during treatment. pHLIPs can
also deliver the conjugated cell-impermeable cargoes inside the cancer cells via a strong non-endocytic pathway,
critical for NP-induced short-range Auger cascade and photoelectrons to reach the vital cellular targets as proved
by experiments and simulations. Complementing the rapid increasing use of MRI for RT planning and on-board
treatment-guidance, pHLIP-GdNPs can also solve the imageability problem for treatment plan optimization. Our
preliminary MRI data shows long tumor retention of NPs (>9 hours, possibly days) post pHLIP-GdNPs injection.
Specific Aims: To provide the pre-clinical foundation for more in-depth translational and clinical studies, we aim
to (i) characterize pHLIP-GdNP and evaluate its RT properties in vitro; (ii) develop a mechanistic biophysical
model of radiosensitization by GdNPs to elucidate relevant biolgocial mechanisms and facilitate quantitative RT
treatment planning; and (iii) investigate the in vivo radiosensitization and imaging properties of pHLIP-GdNP.
Research Design: (i) Characterize pHLIP-GdNP and internalization, microscopically image cellular uptake with
fluorescent tags, conduct clonogenic survival experiments in cell culture with both 250 kVp and 6 MV X-rays,
generate pH-dependent cell survival curves, and examine DNA damage. (ii) Use a Monte Carlo particle track
structure simulation to calculate microscopic dose enhancement induced by NPs. DNA damage will be modeled
to predict sensitizer enhancement ratios and compare with experimental results. (iii) Investigate the feasibility of
MR imaging to determine quantitatively in vivo NP distribution and the residence-transit time in tumor and critical
organs in mouse models, the enhanced radiosensitization in vivo in mice injected with pHLIP-GdNPs compared
to mice injected with untargeted GdNPs using tumor growth delay assay, and the in vivo toxicity of pHLIP-GdNPs.
Impact: This project can lead to a novel theranostic agent that offers improved therapeutic ratio and imageability.
This new paradigm of NP delivery and imaging can a have broad impact in image-guided NP-enhanced RT.
该项目的长期目标是克服一些阻碍临床应用的主要障碍。
金属纳米颗粒(NP)放射增敏在放射治疗(RT)中的转化。研究表明
被动的、增强的渗透性和保留性(EPR)效应本身不足以递送所述量的
用可负担量的注射NP进行体内放射增敏所需的瘤内和细胞内NP
并且常规NP在体内被快速清除(~分钟)。成像体内NP生物分布,
定量RT治疗计划也是一个未解决的关键问题。积极瞄准并内化为
通过与低pH插入肽(pHLIP)缀合的钆(Gd)纳米粒抑制癌细胞具有潜力,
用于增强肿瘤细胞中NP的摄取和通过MRI进行选择性定量成像的双重目的。
pHLIP-GdNPs可以主动靶向实体瘤不可避免的酸性微环境,这在肿瘤中不存在。
健康的组织因此,它上级于其他生物标记物靶向,例如抗体靶向,其可以
变得非特异性,并在处理期间通过选择非表达亚克隆而被避免。pHLIPs可以
还通过强的非内吞途径将结合的细胞不可渗透的货物递送到癌细胞内,
对于NP诱导的短程俄歇级联和光电子到达重要的细胞靶点至关重要,
by experiments实验and simulations模拟.补充快速增加的MRI用于RT计划和机载
pHLIP-GdNP还可以解决用于治疗计划优化的成像问题。我们
初步MRI数据显示在pHLIP-GdNP注射后NP的长肿瘤保留(>9小时,可能是数天)。
具体目标:为了为更深入的转化和临床研究提供临床前基础,我们的目标是
(i)表征pHLIP-GdNP并评估其体外RT性质;(ii)开发生物物理机制,
GdNPs的放射增敏模型,以阐明相关的生物学机制并促进定量RT
治疗计划;和(iii)研究pHLIP-GdNP的体内放射增敏和成像特性。
研究设计:(i)表征pHLIP-GdNP和内化,用显微镜成像细胞摄取,
荧光标签,用250 kVp和6 MV X射线在细胞培养物中进行克隆存活实验,
生成pH依赖性细胞存活曲线,并检查DNA损伤。(ii)使用蒙特卡罗粒子轨迹
结构模拟计算纳米粒子引起的微观剂量增强。DNA损伤将被建模
预测增感剂增强比,并与实验结果进行比较。(iii)调查的可行性
MR成像用于定量测定NP在体内的分布和肿瘤中的滞留-通过时间,
在小鼠模型的器官中,在注射pHLIP-GdNPs的小鼠中增强的体内放射增敏作用与
使用肿瘤生长延迟测定法对注射了非靶向GdNPs的小鼠的肿瘤生长进行了研究,并对pHLIP-GdNPs的体内毒性进行了研究。
影响:该项目可以导致一种新型的治疗诊断剂,提供改善的治疗率和成像。
NP递送和成像的这种新范例可以在图像引导的NP增强RT中具有广泛的影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microdosimetric Investigation and a Novel Model of Radiosensitization in the Presence of Metallic Nanoparticles.
- DOI:10.3390/pharmaceutics13122191
- 发表时间:2021-12-18
- 期刊:
- 影响因子:5.4
- 作者:Yan H;Carlson DJ;Abolfath R;Liu W
- 通讯作者:Liu W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillem Pratx其他文献
Guillem Pratx的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillem Pratx', 18)}}的其他基金
Investigation of nanobubble nucleation by radiation therapy
放射治疗纳米气泡成核的研究
- 批准号:
10642367 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Preclinical microphysiological tumor models for nuclear medicine
核医学临床前微生理肿瘤模型
- 批准号:
10587674 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
A Novel Assay to Individualize Resensitization of Iodine-Refractory Thyroid Cancer
碘难治性甲状腺癌个体化再敏化的新方法
- 批准号:
10612661 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
High-throughput radionuclide counting and sorting of single cells
单细胞的高通量放射性核素计数和分选
- 批准号:
8850698 - 财政年份:2015
- 资助金额:
$ 18.11万 - 项目类别:
Real-time tracking of single cells in live animals
实时追踪活体动物的单细胞
- 批准号:
8930185 - 财政年份:2014
- 资助金额:
$ 18.11万 - 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
- 批准号:
8674402 - 财政年份:2014
- 资助金额:
$ 18.11万 - 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
- 批准号:
9477626 - 财政年份:2014
- 资助金额:
$ 18.11万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 18.11万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 18.11万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 18.11万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 18.11万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别: