New tools for tracking single cells in vivo

体内追踪单细胞的新工具

基本信息

  • 批准号:
    10248540
  • 负责人:
  • 金额:
    $ 62.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Abstract This project will develop a new pipeline for tracking the migration of single cells in vivo at the whole-body level. Cell migration is a crucial biological process involved in the pathology and treatment of some of the world’s most intractable diseases. Stem cell therapy and immunotherapy, for instance, are emerging as viable treatments for conditions previously thought incurable, such as heart failure and diabetes. Unfortunately, cell tracking methods remain inadequate to fully capitalize on these recent advances. Currently, cell tracking relies on imaging the distribution of a specific population of cell through a contrast agent, which is either directly affixed to the cells or targeted towards an engineered reporter protein. This approach precludes precise measurement of cell circulation kinetics or migration routes. Furthermore, due to efflux and non-specific retention, the distribution of the contrast agent does not necessarily match the underlying distribution of cells. In view of these challenges, we consider a novel approach that has the potential to revolutionize cell tracking. While current methods aim to track bulk populations of cells, we hypothesize that novel biological insight may be gained by tracking cells individually, in small numbers, with unprecedented temporal and spatial accuracy. We will pursue the development of CellGPS, a method capable of tracking the 3D position of individual cells continuously as these cells migrate through the body of a living subject. To accomplish this goal, we rely on a previously developed algorithm that can extract the position of a moving cell directly from the raw list-mode output of a positron emission tomography (PET) scanner. PET is the most sensitive imaging modality available for whole-body human imaging and, therefore, the ideal imaging modality for this project. Building on extensive preliminary studies, we plan to pursue the following four specific aims: (1) develop a rapid, safe and robust strategy for radiolabeling cells; (2) design and build a novel microfluidics pipeline to molecularly profile and isolate single cells for in vivo tracking; (3) evaluate single-cell tracking as a readout of cell dissemination in an experimental model of metastatic melanoma; and (4) explore translation of this technology to human imaging scanners. This project is expected to generate a positive impact for biomedical research both in the pre-clinical and clinical setting. For instance, single-cell tracking could be used to determine the spatiotemporal kinetics of cell migration during the earliest phase of the metastatic cascade. The method could also help determine the dynamic distribution of cells after transplantation for cell-based therapy, which could help predict response and optimize treatment regimen. This project will achieve critical milestones towards routine and reproducible tracking of single cells in vivo using PET.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guillem Pratx其他文献

Guillem Pratx的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guillem Pratx', 18)}}的其他基金

Investigation of nanobubble nucleation by radiation therapy
放射治疗纳米气泡成核的研究
  • 批准号:
    10642367
  • 财政年份:
    2023
  • 资助金额:
    $ 62.01万
  • 项目类别:
Preclinical microphysiological tumor models for nuclear medicine
核医学临床前微生理肿瘤模型
  • 批准号:
    10587674
  • 财政年份:
    2023
  • 资助金额:
    $ 62.01万
  • 项目类别:
A Novel Assay to Individualize Resensitization of Iodine-Refractory Thyroid Cancer
碘难治性甲状腺癌个体化再敏化的新方法
  • 批准号:
    10612661
  • 财政年份:
    2023
  • 资助金额:
    $ 62.01万
  • 项目类别:
New tools for tracking single cells in vivo
体内追踪单细胞的新工具
  • 批准号:
    10400200
  • 财政年份:
    2020
  • 资助金额:
    $ 62.01万
  • 项目类别:
New tools for tracking single cells in vivo
体内追踪单细胞的新工具
  • 批准号:
    10055061
  • 财政年份:
    2020
  • 资助金额:
    $ 62.01万
  • 项目类别:
Tumor-targeted delivery and cell internalization of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy
用于图像引导纳米颗粒增强放射治疗的治疗诊断钆纳米颗粒的肿瘤靶向递送和细胞内化
  • 批准号:
    10457237
  • 财政年份:
    2019
  • 资助金额:
    $ 62.01万
  • 项目类别:
High-throughput radionuclide counting and sorting of single cells
单细胞的高通量放射性核素计数和分选
  • 批准号:
    8850698
  • 财政年份:
    2015
  • 资助金额:
    $ 62.01万
  • 项目类别:
Real-time tracking of single cells in live animals
实时追踪活体动物的单细胞
  • 批准号:
    8930185
  • 财政年份:
    2014
  • 资助金额:
    $ 62.01万
  • 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
  • 批准号:
    8674402
  • 财政年份:
    2014
  • 资助金额:
    $ 62.01万
  • 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
  • 批准号:
    9477626
  • 财政年份:
    2014
  • 资助金额:
    $ 62.01万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了