High-throughput radionuclide counting and sorting of single cells
单细胞的高通量放射性核素计数和分选
基本信息
- 批准号:8850698
- 负责人:
- 金额:$ 24.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-18 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesAutoradiographyBindingBiochemicalBiochemical ProcessBiological AssayBiomedical ResearchCancer BiologyCell SeparationCellsClassificationDetectionEncapsulatedEnsureEnzymesFlow CytometryFluorescenceGoalsHealthHeterogeneityImmobilizationImmobilized CellsImmuneIn VitroIndividualInvestigationLabelLinkLiquid substanceLymphomaMalignant NeoplasmsMeasurementMeasuresMembraneMembrane Transport ProteinsMetabolicMethodologyMethodsMicrobiologyMicrofluidicsMicroscopyMolecularMolecular AnalysisOutcomePharmaceutical PreparationsPhenotypePloidiesPopulationProcessPropertyProteomicsRNA SequencesRadioactiveRadioisotopesRadiolabeledResearchResearch Project GrantsResolutionSamplingScintillation CountingSignal TransductionSorting - Cell MovementSurfaceSuspension substanceSuspensionsSystemTechniquesTechnologyTherapeutic AgentsTimeTumor BiologyVariantanticancer researchbasecalginatcancer cellcancer diagnosiscancer therapydesignfluorophoreimaging agentimprovedin vivoinnovationluminescencemillisecondnovelnovel strategiesphosphorescenceradiotracersingle cell analysissingle moleculesmall moleculestemtemporal measurementtooltranscriptome sequencingtumoruptake
项目摘要
DESCRIPTION (provided by applicant): The first aim of this project is to develop an innovative methodology for measuring radionuclide uptake in single cells using a standard flow cytometer. The rationale for this aim is that flow cytometry in its current form can only interrogate cellular states by detecting fluorescence emissions from single cells, a process that excludes small-molecule compounds that are neither intrinsically fluorescent nor can be labeled with a fluorophore. The novel method we plan to develop is aimed at studying how single cells interact with any small molecule in the context of improving our understanding of fundamental cancer biology as well as developing new molecular agents for cancer diagnosis and treatment. Many small molecules can be labeled with beta-emitting radionuclides such as 11C, 18F, 32P, 35S, 64Cu, and 124I, which make the proposed approach almost universal with respect to the range of molecules that can be utilized. However, detecting radionuclides within a flow cytometer poses a major challenge. Due to the high throughput, each cell can only be measured for a few milliseconds, which is too short for a significant number of radioactive decays to occur. Thus, we plan to use photostimulable phosphors (PSPs) to physically record and store the number of radioactive decays that occur within each single cell over a prolonged exposure. Using microfluidics technology, we will encapsulate radioactive single cells and PSP microcrystals inside calcium-alginate droplets. This will ensure that PSP crystals are uniquely associated with a single cell. After complete decay of the radionuclide label, these droplets will be flowed through a flow cytometer to retrieve the energy stored inside the PSP microcrystals, which is directly proportional to the number of radioactive decays that occurred within each single cell. Hence, this approach will allow us to measure radionuclide uptake in up to 100,000 single cells. The second aim of this project is to develop a complementary approach for measuring the dynamic exchange of radiolabeled molecules across the membrane of single cells. Measuring the time-varying uptake of small molecules inside of single cells will allow us to quantitatively estimate influx and efflux rates and thus the amount and activity of various membrane transporters and enzymes within the cells. However, this requires that the same single cells be measured repeatedly over time in a statistically robust fashion. Thus, using microfluidic technology, we plan to develop a hydrodynamic cell-trapping array that is bonded to a transparent scintillator plate to enable facile and sensitive quantitation of the time-varying concentration of a radionuclide in approximately 500 single cells. Together, these two complementary research aims will open entirely new research avenues for studying normal and abnormal molecular processes in single cancer cells, with high throughput (aim 1) and high temporal resolution (aim 2).
描述(由申请人提供):该项目的第一个目标是开发一种创新的方法,用于使用标准流式细胞仪测量单细胞中的放射性核素摄取。这一目的的基本原理是,目前形式的流式细胞术只能通过检测单个细胞的荧光发射来查询细胞状态,这一过程排除了既不是本质上荧光也不能用荧光团标记的小分子化合物。我们计划开发的新方法旨在研究单细胞如何与任何小分子相互作用,从而提高我们对基础癌症生物学的理解,并开发用于癌症诊断和治疗的新分子药物。许多小分子可以用发射β的放射性核素标记,如11C、18F、32P、35S、64Cu和124I,这使得所提出的方法在可利用的分子范围内几乎是通用的。然而,在流式细胞仪中检测放射性核素是一个重大挑战。由于高通量,每个细胞只能测量几毫秒,这对于发生大量放射性衰变来说太短了。因此,我们计划使用光刺激荧光粉(psp)来物理记录和存储在长时间暴露下每个细胞内发生的放射性衰变的数量。利用微流体技术,我们将放射性单细胞和PSP微晶体封装在海藻酸钙液滴中。这将确保PSP晶体唯一地与单个细胞相关联。在放射性核素标签完全衰变后,这些液滴将通过流式细胞仪来提取储存在PSP微晶中的能量,这与每个单细胞内发生的放射性衰变数量成正比。因此,这种方法将使我们能够测量多达100,000个单个细胞的放射性核素摄取。该项目的第二个目标是开发一种互补的方法来测量单个细胞膜上放射性标记分子的动态交换。测量单个细胞内小分子随时间变化的摄取将使我们能够定量地估计流入和流出的速率,从而定量地估计细胞内各种膜转运蛋白和酶的数量和活性。然而,这需要在一段时间内以统计可靠的方式重复测量相同的单个细胞。因此,利用微流控技术,我们计划开发一种流体动力学细胞捕获阵列,该阵列与透明闪烁体板结合,可以轻松灵敏地定量测定大约500个单个细胞中放射性核素的随时间变化的浓度。总之,这两个互补的研究目标将为研究单个癌细胞的正常和异常分子过程开辟全新的研究途径,具有高通量(目标1)和高时间分辨率(目标2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillem Pratx其他文献
Guillem Pratx的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillem Pratx', 18)}}的其他基金
Investigation of nanobubble nucleation by radiation therapy
放射治疗纳米气泡成核的研究
- 批准号:
10642367 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Preclinical microphysiological tumor models for nuclear medicine
核医学临床前微生理肿瘤模型
- 批准号:
10587674 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
A Novel Assay to Individualize Resensitization of Iodine-Refractory Thyroid Cancer
碘难治性甲状腺癌个体化再敏化的新方法
- 批准号:
10612661 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Tumor-targeted delivery and cell internalization of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy
用于图像引导纳米颗粒增强放射治疗的治疗诊断钆纳米颗粒的肿瘤靶向递送和细胞内化
- 批准号:
10457237 - 财政年份:2019
- 资助金额:
$ 24.44万 - 项目类别:
Real-time tracking of single cells in live animals
实时追踪活体动物的单细胞
- 批准号:
8930185 - 财政年份:2014
- 资助金额:
$ 24.44万 - 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
- 批准号:
8674402 - 财政年份:2014
- 资助金额:
$ 24.44万 - 项目类别:
Quantitative Imaging of Cancer Drug Resistance via Radioluminescence Microarrays
通过放射发光微阵列对癌症耐药性进行定量成像
- 批准号:
9477626 - 财政年份:2014
- 资助金额:
$ 24.44万 - 项目类别:
相似海外基金
Development of non-contact autoradiography technology using magnetic field
利用磁场的非接触式放射自显影技术的开发
- 批准号:
19K15947 - 财政年份:2019
- 资助金额:
$ 24.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging
用于体内放射自显影成像的超高分辨率脑 PET 扫描仪
- 批准号:
9791189 - 财政年份:2018
- 资助金额:
$ 24.44万 - 项目类别:
Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging
用于体内放射自显影成像的超高分辨率脑 PET 扫描仪
- 批准号:
10117728 - 财政年份:2018
- 资助金额:
$ 24.44万 - 项目类别:
Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging
用于体内放射自显影成像的超高分辨率脑 PET 扫描仪
- 批准号:
10237144 - 财政年份:2018
- 资助金额:
$ 24.44万 - 项目类别:
Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging
用于体内放射自显影成像的超高分辨率脑 PET 扫描仪
- 批准号:
10436281 - 财政年份:2018
- 资助金额:
$ 24.44万 - 项目类别:
Development of autoradiography technique capable of sequential imaging -Toward visualization of radioactive cesium dynamics in botanical bodies-
开发能够连续成像的放射自显影技术 -实现植物体中放射性铯动力学的可视化 -
- 批准号:
17K05109 - 财政年份:2017
- 资助金额:
$ 24.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
application of high resolution arufa-autoradiography for analysing micro-distribution of B-compund in tissues and its BNCT effects
应用高分辨率阿鲁法放射自显影分析B化合物在组织中的微观分布及其BNCT效应
- 批准号:
26670557 - 财政年份:2014
- 资助金额:
$ 24.44万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Visualization of the change in pain by the autoradiography and calcium imaging in the brain and spinal cord
通过放射自显影和大脑和脊髓钙成像显示疼痛变化
- 批准号:
24659294 - 财政年份:2012
- 资助金额:
$ 24.44万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Digital Autoradiography of an Irradiated Fuel Pellet
辐照燃料颗粒的数字放射自显影
- 批准号:
370568-2008 - 财政年份:2008
- 资助金额:
$ 24.44万 - 项目类别:
University Undergraduate Student Research Awards