A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data

利用患者数据客观评估定量成像方法的非金标准框架

基本信息

  • 批准号:
    10185997
  • 负责人:
  • 金额:
    $ 46.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Quantitative imaging, where a numerical/statistical feature is computed from a patient image, is emerging as an important tool for diagnosis and therapy planning. Several new and improved quantitative imaging (QI) methods, which include reconstruction, analysis, and estimation methods are thus being developed. There is an important and timely need to optimize the QI methods on the underlying clinical quantitative task, as sub-optimal methods would yield quantitative values that are unreliable, and thus have limited clinical value. Performing this evaluation with patient imaging data is highly desirable, but the unreliability or unavailability of a gold standard for most patient studies makes evaluation impractical or impossible. To enable evaluation of imaging methods with patient data, several no-gold-standard evaluation (NGSE) techniques have been developed, but mostly in the context of detection tasks. More recently, similar NGSE techniques for quantitative tasks have been developed by us and others. We have demonstrated the efficacy of our NGSE technique in ranking segmentation methods for diffusion MR and reconstruction methods for quantitative SPECT. Our goal in this project is to take steps towards translating this mathematical concept to a clinical tool. Existing NGSE techniques make assumptions that may not hold in several QI applications, require large amounts of patient images that are often unavailable, and have been validated using only computational studies. To address these issues, we propose to develop and comprehensively validate a novel generalized Bayesian NGSE framework. This framework will be a generalized Bayesian approach that will reflect clinical scenarios accurately and not require multiple patient studies. The framework will be validated using new anthropomorphic physical phantom and patient data in addition to realistic and validated simulation studies. For clinical translation, it is also necessary to demonstrate the efficacy of the framework in answering an important clinical question. The clinical question we choose is that of using the NGSE framework to determine the optimal segmentation method to compute volumetric features from PET for early prediction of therapy response in patients with non-small cell lung cancer (NSCLC). Answering this question will help address a critical, urgent and unmet need for strategies to personalize the treatment of NSCLC, a disease with high morbidity and mortality rates. The proposed NGSE framework is well poised to accelerate the clinical translation of new and improved QI methods by enabling their evaluation with patient data. The framework will have multiple high-impact applications such as in determining the optimal QI method for measuring biomarkers to monitor cancer-treatment response, diagnose cardiac/neurodegenerative diseases, and conduct imaging- based dosimetry. Thus, developing this NGSE framework has the potential to significantly impact QI-based clinical decision making.
项目摘要 定量成像(其中从患者图像计算数值/统计特征)正作为一种新兴的成像技术而出现。 诊断和治疗计划的重要工具。几种新的和改进的定量成像(QI)方法, 包括重建、分析和估计方法。有一个重要 并及时需要优化基础临床定量任务上的QI方法,作为次优方法 将产生不可靠的定量值,因此具有有限的临床价值。执行此评估 患者成像数据是非常可取的,但对于大多数人来说,黄金标准的不可靠性或不可用性 患者研究使得评价不切实际或不可能。能够对患者的成像方法进行评价 数据,几个非黄金标准评估(NGSE)技术已经开发出来,但主要是在上下文 检测任务。最近,我们开发了类似的NGSE技术,用于定量任务 等人我们已经证明了我们的NGSE技术在排名分割方法的有效性, 扩散MR和定量SPECT的重建方法。我们在这个项目中的目标是采取措施, 将这一数学概念转化为临床工具。现有的NGSE技术做出的假设可能 在多个QI应用中不适用,需要大量患者图像,这些图像通常不可用, 仅使用计算研究进行验证。为了解决这些问题,我们建议制定并 全面验证了一种新的广义贝叶斯NGSE框架。该框架将是一个通用的 贝叶斯方法将准确反映临床情况,不需要多个患者研究。的 将使用新的拟人物理体模和患者数据以及真实的 并验证了模拟研究。对于临床翻译,还需要证明 回答一个重要的临床问题。我们选择的临床问题是使用NGSE 框架,以确定最佳分割方法,从PET计算体积特征, 预测非小细胞肺癌(NSCLC)患者的治疗反应。回答这个问题将 帮助解决非小细胞肺癌(NSCLC)个性化治疗策略的关键、紧迫和未满足的需求 发病率和死亡率都很高。拟议的NGSE框架已准备好加速临床 翻译新的和改进的QI方法,使他们的评估与病人的数据。该框架将 具有多个高影响力的应用,例如在确定用于测量生物标志物的最佳QI方法中 监测癌症治疗反应,诊断心脏/神经退行性疾病,并进行成像- 基于剂量学。因此,开发这种NGSE框架有可能对基于QI的 临床决策

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhinav K Jha其他文献

Abhinav K Jha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhinav K Jha', 18)}}的其他基金

Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
  • 批准号:
    10446871
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
  • 批准号:
    10704042
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
A fully automated PET radiomics framework
全自动 PET 放射组学框架
  • 批准号:
    10458241
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
  • 批准号:
    10375582
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
  • 批准号:
    10553677
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
A framework to quantify and incorporate uncertainty for ethical application of AI-based quantitative imaging in clinical decision making
量化和纳入基于人工智能的定量成像在临床决策中的伦理应用的不确定性的框架
  • 批准号:
    10599754
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:

相似海外基金

American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8069079
  • 财政年份:
    2010
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    6924176
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8043578
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7155855
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7627986
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    6720785
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7163173
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7008030
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8729721
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8248329
  • 财政年份:
    1999
  • 资助金额:
    $ 46.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了