Informatics tools for identification, prioritization and clinical application of neoantigens
用于新抗原识别、优先排序和临床应用的信息学工具
基本信息
- 批准号:10460031
- 负责人:
- 金额:$ 7.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAllelesAnimal ModelAntibodiesAwardB-LymphocytesBypassCancer VaccinesCellular biologyClinicalClinical TrialsCodeCollaborationsComplexDataDatabasesDevelopmentEngineeringEvaluationFoundationsFundingGene FusionGuidelinesImmunobiologyImmunologic FactorsImmunotherapyInformaticsInstructionLeadMHC Class I GenesMHC binding peptideMolecular AnalysisMutationParentsPatientsPeptide TransportPeptidesPerformancePharmaceutical PreparationsProductionProtein IsoformsProteinsSignal TransductionSomatic MutationSourceT cell responseT cell therapyT-LymphocyteTechnologyTestingTexasTherapeuticTrainingTranscriptTumor AntigensTumor Specific PeptideUniversitiesUntranslated RNAVaccine Clinical TrialVaccine DesignVaccinesVisualizationWashingtonWorkanti-tumor immune responseanticancer researchbasecancer cellcancer typeclinical applicationexperienceimmune checkpoint blockadeimmunogenicimmunogenicityinformatics toolinnovationinsertion/deletion mutationneoantigenspre-clinicalpredicting responseresistance mechanismsensor technologysuccesstherapeutic targettooltumorvaccine deliveryvaccine trial
项目摘要
Project Summary/Abstract (from parent award: U01 CA248235 as per instructions)
Somatic mutations in cancer cells lead to the production of neoantigens: patient- and tumor-specific peptides
that are capable of inducing T cell recognition. Recent clinical trials have established that, when introduced in a
vaccine, these neoantigens can stimulate anti-tumor immune responses. The path to producing such a
personalized vaccine begins with sequencing a patient’s tumor, identifying candidate somatic mutations and
then computationally predicting which neoepitopes will be most effective at stimulating a T-cell response. This
prediction step should ideally assess a complex interplay of factors, including the type of somatic mutation, the
patient’s class I and II HLA alleles, peptide processing, peptide transport, peptide-MHC binding and many co-
factors of immune recognition and signaling. The best current approaches focus almost entirely on a single
factor (peptide-MHC binding) and have only a 16-43% success rate in predicting immunogenic peptides. To
address this challenge we will develop pVACtools, an informatics toolkit for comprehensive identification,
characterization, and clinical application of neoantigens. This tool will be the first to support all major
neoepitope sources including insertions, deletions, transcript isoforms, gene fusions, peptides from normally
non-coding regions, and B cell or T cell rearrangements (BCRs/TCRs). We will also integrate analysis of Class
I and II peptide-MHC binding. All tools will be developed to support foundational pre-clinical work in animal
models of immunotherapy. Furthermore, we will test several specific hypotheses relating to new predictors of
immunogenicity. To elucidate these factors and enhance prioritization of neoantigens we will create the first
open access database of experimentally and clinically validated neoantigens. Using these data we will address
the question of what peptide-intrinsic and patient-specific features determine the therapeutic potential of a
neoantigen. To validate their translational potential, we will apply our neoantigen tools to clinical trials involving
checkpoint blockade drugs and personalized cancer vaccines. We will develop a visualization interface that
facilitates clinical review and selection of neoantigen candidates for several vaccine delivery platforms. These
tools will be used to perform analysis of >200 cases from ongoing vaccine trials to evaluate their performance
and address key outstanding immunobiology questions including: (a) the importance of particular neoantigen
sources in specific cancer types, (b) the importance of accurately determining HLA mutation/expression, (c) the
significance of having both MHC class I and II restricted peptides in a vaccine, (d) how to identify specific
neoepitope/TCR pairings, and (e) how neoantigens contribute to mechanisms of resistance to
immunotherapies. These tools will thus enable fundamental studies of T cell biology, lead to more effective
personalized cancer vaccine designs, and support better prediction of response to checkpoint blockade
therapy. Finally, based on these experiences and in collaboration with our team of clinical vaccine trial leaders,
we will develop detailed guidelines and training materials for neoantigen analysis.
项目摘要/摘要(根据说明,来自母公司合同:U 01 CA 248235)
癌细胞中的体细胞突变导致新抗原的产生:患者和肿瘤特异性肽
能够诱导T细胞识别。最近的临床试验已经证实,当引入一种
疫苗,这些新抗原可以刺激抗肿瘤免疫应答。生产这种产品的途径
个性化疫苗首先对患者的肿瘤进行测序,识别候选体细胞突变,
然后通过计算预测哪些新表位将最有效地刺激T细胞应答。这
预测步骤应该理想地评估因素的复杂相互作用,包括体细胞突变的类型,
患者的I类和II类HLA等位基因,肽加工,肽转运,肽-MHC结合和许多共-
免疫识别和信号传导的因素。目前最好的方法几乎完全集中在一个单一的
因子(肽-MHC结合),并且在预测免疫原性肽中仅具有16-43%的成功率。到
为了应对这一挑战,我们将开发pVACtools,一个用于全面识别的信息学工具包,
新抗原的表征和临床应用。该工具将是第一个支持所有主要
新表位来源,包括插入、缺失、转录物同种型、基因融合、来自正常
非编码区和B细胞或T细胞重排(BCR/TCR)。我们还将整合类的分析
I和II肽-MHC结合。将开发所有工具,以支持动物基础临床前工作
免疫治疗的模型。此外,我们将测试几个具体的假设有关的新的预测因素,
免疫原性为了阐明这些因素并增强新抗原的优先级,我们将创建第一个
实验和临床验证的新抗原的开放访问数据库。利用这些数据,我们将
什么样的肽内在特征和患者特异性特征决定了A
新抗原为了验证它们的翻译潜力,我们将把我们的新抗原工具应用于临床试验,
检查点封锁药物和个性化癌症疫苗。我们将开发一个可视化界面,
有助于临床审查和选择用于几种疫苗递送平台的新抗原候选物。这些
将使用工具对来自正在进行的疫苗试验的>200个病例进行分析,以评估其性能
并解决关键的突出免疫生物学问题,包括:(a)特定新抗原的重要性
来源,(B)准确确定HLA突变/表达的重要性,(c)
在疫苗中同时具有MHC I类和II类限制性肽的意义,(d)如何鉴定特异性
新表位/TCR配对,以及(e)新抗原如何有助于对新表位/TCR配对的抗性机制。
免疫疗法因此,这些工具将使T细胞生物学的基础研究成为可能,
个性化癌症疫苗设计,并支持更好地预测对检查点封锁的反应
疗法最后,根据这些经验,并与我们的临床疫苗试验领导团队合作,
我们将为新抗原分析制定详细的指南和培训材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malachi Griffith其他文献
Malachi Griffith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malachi Griffith', 18)}}的其他基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Genomic Expert Curation Panels for Pediatric Malignancies
儿科恶性肿瘤基因组专家管理小组
- 批准号:
10708799 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Genomic Expert Curation Panels for Pediatric Malignancies
儿科恶性肿瘤基因组专家管理小组
- 批准号:
10413420 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Informatics tools for identification, prioritization and clinical application of neoantigens
用于新抗原识别、优先排序和临床应用的信息学工具
- 批准号:
10219995 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
Informatics tools for identification, prioritization and clinical application of neoantigens
用于新抗原识别、优先排序和临床应用的信息学工具
- 批准号:
10473522 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
Integrated Analysis & Interpretation of Whole Genome Exome & Transcriptome Sequen
综合分析
- 批准号:
9443700 - 财政年份:2017
- 资助金额:
$ 7.78万 - 项目类别:
INTEGRATED ANALYSIS & INTERPRETATION OF WHOLE GENOME, EXOME & TRANSCRIPTOME SEQUENCE DATA IN CANCER
综合分析
- 批准号:
9061766 - 财政年份:2015
- 资助金额:
$ 7.78万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study Administrative Supplement
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究行政补充
- 批准号:
10893074 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:














{{item.name}}会员




