Identifying and predicting subgroups related to function in individuals after stroke.
识别和预测与中风后个体功能相关的亚组。
基本信息
- 批准号:10459813
- 负责人:
- 金额:$ 5.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2023-07-03
- 项目状态:已结题
- 来源:
- 关键词:AgeAreaCharacteristicsClinical ResearchCognitionDecision TreesDevelopmentDoseElectronic Health RecordEnvironmentFellowshipFundingGoalsGrowthHealthHealth Care CostsHealthcare SystemsImpairmentIndividualInterventionMeasuresMentorsModelingOutcomePatient-Focused OutcomesPatientsPatternPersonsQuality of lifeRecoveryRecovery of FunctionRehabilitation therapyResearchResearch PersonnelResearch TrainingScientistStrokeSubgroupTestingTimeTrainingUnited StatesUpper ExtremityWorkcare costscareerclassification treesclinical careclinical decision-makingcognitive functioncomorbiditydemographicsdeprivationdesigndisabilityelectronic dataexperiencefallsfunctional statushospital readmissionimplementation interventionimprovedindexingindividualized medicineintervention deliverymodel developmentpost strokepredictive modelingprospectiveregression treesstroke recoverystroke rehabilitation
项目摘要
PROJECT SUMMARY/ABSTRACT
Two common, long-lasting deficits after stroke are impaired mobility and cognition. Impairments in mobility and
cognition are associated with numerous negative health consequences, including falls, poor quality of life, and
hospital readmissions. Recovery of mobility and cognition after stroke is highly variable and poorly understood.
Therefore, rehabilitation professionals are unable to provide interventions that are tailored to each specific
patients they treat, contributing to a “one size fits all” approach to post stroke rehabilitation that is characterized
by incomplete recovery and high healthcare costs. A comprehensive characterization of recovery and models
that predict recovery are essential to shifting towards interventions that are tailored to specific individuals after
stroke. Thus, the overall objective of this proposal is to develop models that predict what recovery trajectory of
mobility and cognition individuals after stroke will follow. Recovery trajectories completely describe patient
recovery and are characterized both their extent (i.e., large, moderate, or limited) and temporal pattern (i.e.,
fast or slow). Both the extent and pattern of recovery can impact the type, timing, and dosing of rehabilitation
interventions; however, the extent of recovery has been the focus of previous work. Models that predict the
recovery trajectory, rather than just the extent of recovery, for mobility and cognition for individuals after stroke
are essential to moving towards rehabilitation interventions that are targeted towards specific individuals after
stroke. Past work related to upper extremity recovery after stroke suggest that there are subgroups related to
recovery trajectories and that the characteristics of individuals can be used to develop predictive models.
Therefore, the central hypothesis of this work is that we can 1) characterize recovery trajectories for mobility
and cognition after stroke and 2) use characteristics of individuals after stroke to develop models to predict
mobility and cognition recovery trajectories. The results of this proposal will provide a comprehensive
understanding of the recovery of mobility and cognition after stroke and an accurate predictive model of the
recovery trajectories of mobility and cognition. This will guide the development and delivery of interventions to
the right person at the right time to optimize functional recovery and improve the efficiency of our healthcare
system. Additionally, the proposed work serves as a first step towards the long-term goal of this fellowship
applicant, which is to understand variability in patient recovery in order to move post-stroke rehabilitation
towards the delivery of interventions that are tailored to each specific patient, thereby, improving patient
outcomes within a more efficient healthcare system. By completing this fellowship proposal under the guidance
of experienced mentors in a strong research environment, the applicant will receive the training needed to
become a productive, independent scientist and to achieve her long term career goals.
项目摘要/摘要
中风后两种常见的、持续时间较长的缺陷是行动能力受损和认知障碍。行动不便,行动不便
认知与许多负面的健康后果有关,包括摔倒、生活质量差和
再次入院治疗。卒中后活动能力和认知能力的恢复具有很高的变异性,人们对此知之甚少。
因此,康复专业人员无法提供针对每个特定患者的干预措施
他们治疗的患者,为中风后康复提供了一种“一刀切”的方法,这种方法的特点是
不完全的恢复和高昂的医疗成本。经济复苏的综合表征和模型
预测复苏对于转向针对特定个人的干预措施是必不可少的
卒中。因此,这项提案的总体目标是开发预测经济复苏轨迹的模型
中风后的机动性和认知力也将随之而来。康复轨迹完全描述了患者
并且被表征为其程度(即,大、中或有限)和时间模式(即,
快或慢)。康复的程度和模式都会影响康复的类型、时间和剂量
干预措施;然而,恢复的程度一直是以往工作的重点。预测未来经济形势的模型
中风后患者的活动能力和认知能力的恢复轨迹,而不仅仅是恢复的程度
对于转向针对特定个人的康复干预是必不可少的
卒中。过去与中风后上肢康复相关的研究表明,有一些亚组与
他还指出,可以利用个人的特征来建立预测模型。
因此,这项工作的中心假设是,我们可以1)表征机动性的恢复轨迹
和中风后的认知,以及2)使用中风后个体的特征来开发模型来预测
活动能力和认知恢复轨迹。这项提议的结果将提供一个全面的
对卒中后活动能力和认知功能恢复的认识及准确的预测模型
活动能力和认知能力的恢复轨迹。这将指导制定和提供干预措施,以
在正确的时间选择合适的人来优化功能恢复并提高我们的医疗保健效率
系统。此外,拟议的工作是迈向该研究金长期目标的第一步。
申请者,这是为了了解患者康复中的变异性,以便推进中风后康复
为每个特定患者量身定做的干预措施的交付,从而改善患者
在更高效的医疗系统中取得的成果。通过在指导下完成本奖学金提案
在强大的研究环境中的经验丰富的导师,申请人将接受所需的培训
成为一名多产、独立的科学家,并实现她的长期职业目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Learning Health System Infrastructure for Precision Rehabilitation After Stroke.
用于中风后精准康复的学习健康系统基础设施。
- DOI:10.1097/phm.0000000000002138
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:French,MargaretA;Daley,Kelly;Lavezza,Annette;Roemmich,RyanT;Wegener,StephenT;Raghavan,Preeti;Celnik,Pablo
- 通讯作者:Celnik,Pablo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret French其他文献
Margaret French的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret French', 18)}}的其他基金
Factors impacting locomotor learning following stroke
影响中风后运动学习的因素
- 批准号:
10053683 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Factors impacting locomotor learning following stroke
影响中风后运动学习的因素
- 批准号:
9904822 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
相似国自然基金
区域空间协同视角下广东省传统村落潜
力特征测度与活化模式研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向区域源桩发展目标的配电网形态演化特征与驱动机理研究
- 批准号:2025JJ60328
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
酵母菌响应浙江区域特色发酵肉制品特征风味物质演变及富集的机制研究
- 批准号:R25C200001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于FAPI PET/MR卵巢癌肿瘤微环境的亚区域-全域空间特征可视化及预测铂耐药复发的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电子垃圾拆解区域受阻胺光稳定剂:污染特征、迁移扩散规律及基于生物有效性的人群外暴露特征
- 批准号:
- 批准年份:2024
- 资助金额:30 万元
- 项目类别:青年科学基金项目
福建多区域百日咳鲍特菌分离株抗原基因特征分析
- 批准号:
- 批准年份:2024
- 资助金额:8.0 万元
- 项目类别:省市级项目
同化无人机遥感深度特征参数与WOFOST模型的水稻估产研究-以江汉平原典型区域为例
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
哈德莱环流的区域性变化特征、成因及其气候影响
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
珠三角区域典型工业源VOCs污染特征及精细化来源解析研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
基于全天时高精度激光雷达观测的区域性重力波源区传播特征研究
- 批准号:42304165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on the geological conditions based on stratigraphy and sedimentary facies and related ground motion characteristics in the Tokyo metropolitan area
东京都地区地层沉积相地质条件及相关地震动特征研究
- 批准号:
20K04094 - 财政年份:2020
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Housing supply and residents' characteristics in the suburban area of Yangon
仰光郊区住房供应及居民特征
- 批准号:
19K01181 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of particle components from vehicle emissions in a suburban residential area
郊区住宅区汽车尾气颗粒物成分特征
- 批准号:
18K18209 - 财政年份:2018
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation study of medical resources based on the epidemiological characteristics of stroke in the specific area
基于特定地区脑卒中流行病学特征的医疗资源评价研究
- 批准号:
17K09210 - 财政年份:2017
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the synaptic characteristics of the medial preoptic area-ventral tegmental neural circuit
内侧视前区-腹侧被盖神经回路突触特征的阐明
- 批准号:
16K19747 - 财政年份:2016
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Proposal of Green Space Evaluation Index Focused on Regional Characteristics of CO2 Concentration in Human Living Area
关注人类居住区CO2浓度区域特征的绿地评价指标建议
- 批准号:
16K06528 - 财政年份:2016
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
analysis and modeling of the characteristics of spreading parameter of directional wave spectrum around the coastal area of Japan
日本沿海定向波谱传播参数特征分析与建模
- 批准号:
15K06237 - 财政年份:2015
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on applicability evaluation method between tourism destination and tourists characteristics in Sanriku area
三陆地区旅游目的地与游客特征适用性评价方法研究
- 批准号:
15K01950 - 财政年份:2015
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of spatial characteristics of elderly people returning driving licenses and they shaping area of daily activity in JAPAN
日本老年人返还驾驶执照的空间特征及其塑造日常活动区域的研究
- 批准号:
15K21589 - 财政年份:2015
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on "Tokunoka" : Inter-area comparison of their characteristics and social roles
“德之香”研究:其特征和社会角色的地区间比较
- 批准号:
15K12793 - 财政年份:2015
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research