Privacy-preserving genomic medicine at scale
大规模保护隐私的基因组医学
基本信息
- 批准号:10459604
- 负责人:
- 金额:$ 66.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmic AnalysisAlgorithmsAutomobile DrivingBiologicalBiologyClinicClinical DataCollaborationsCommunitiesComplexComplex AnalysisComputational BiologyComputer softwareComputing MethodologiesConsumptionDataData AnalysesData PoolingData SecurityData SetDiseaseDrug InteractionsElectronic Health RecordEngineeringEnvironmentGeneticGenetic studyGenomeGenomic medicineGenomicsGoalsHealthHigh-Throughput Nucleotide SequencingHumanIndividualInstitutesInstitutionKnowledgeLettersMachine LearningMainstreamingMeasuresMedical ImagingMedical RecordsMedicineMethodsModernizationMolecularNaturePatientsPerformancePharmacologyPolygenic TraitsPrivacyProcessProductionPropertyResearch PersonnelResourcesRiskSamplingScienceSecureSecuritySoftware EngineeringSoftware ToolsStandardizationStreamStructureSupercomputingTechniquesTechnologyTimeTranslationsUnited States National Institutes of HealthWorkanalysis pipelinebasebiobankbiomedical imagingclinical developmentclinical phenotypeclinically relevantcohortcomputer frameworkcostcryptographydata analysis pipelinedata handlingdata integrationdata repositorydata sharingdisorder riskepidemiology studyexperimental studygenome analysisgenome wide association studygenomic datahealth datainnovationinsightmonomethoxypolyethylene glycolmulti-ethnicneuroimagingnovelopen sourcepolygenic risk scoreprecision medicinepreservationprivacy preservationstatisticssuccesstask analysistheoriestool
项目摘要
1 Project Summary
2
3 High-throughput sequencing, biomedical imaging, and electronic health record technologies are
4 generating health-related datasets of unprecedented scale. Integrative analysis of these
5 resources promises to reveal new biology and drive personal and precision medicine. Yet, the
6 sensitive nature of these data often requires that they be kept in isolated silos, limiting their
7 usefulness to science. The goal of this project is to develop innovative privacy-preserving
8 algorithms to enable data sharing and drive genomic medicine. Crucially, we will draw upon our
9 past success in secure genome analysis and algorithmic expertise in computational biology to
10 address the imminent need to perform complex integrative analyses securely and at scale.
11 Current privacy-preserving tools are prohibitively too costly to perform the complex
12 calculations required in genomic analysis. We previously leveraged the highly structured nature
13 of biological data and novel optimization strategies to implement efficient pipelines for secure
14 genome-wide association studies (GWAS) and drug interaction predictions which scaled to
15 millions of samples. In this project, we will further exploit the unique properties of biomedical data
16 to: (i) develop secure integrative analysis methods for genomic medicine; (ii) develop an easy-to-
17 use programming environment with advanced automated optimizations to facilitate the adoption
18 of privacy-preserving analyses; and (iii) promote the use of our privacy techniques to gain novel
19 biological insights through large-scale collaborative genetic studies of multi-ethnic cohorts.
20 With co-I’s Amarasinghe (MIT) and Cho (Broad Institute), we aim to apply these tools to
21 realize the first multi-institution, multi-national secure genetic studies with our partners at the
22 Swiss Personalized Health Network, UK Biobank, Finnish FinnGen, All of Us, NIH NCBI, Broad
23 and Barcelona Supercomputing Center (Letters of Support). We will also use our privacy-
24 preserving approaches to study genomic origins of polygenic traits for disease as well as
25 neuroimaging and other clinical phenotypes. We will continue to actively integrate our methods
26 into community standards (MPEG-G, GA4GH).
27 Successful completion of these aims will result in computational methods and open-source,
28 easy-to-use, production-grade implementations that open the door to secure integration and
29 analysis of massive sets of sensitive genomic and clinical data. With input from our collaborations,
30 we will build these tools and apply them to better understand the molecular causes of human
31 health and its translation to the clinic.
1项目概要
2
3高通量测序、生物医学成像和电子健康记录技术
4.生成规模空前的健康相关数据集。综合分析这些
5资源承诺揭示新的生物学,并推动个人和精准医疗。然而
这些数据的敏感性通常要求将其保存在隔离的孤岛中,从而限制了其
7科学的用处该项目的目标是开发创新的隐私保护
8种算法实现数据共享并推动基因组医学。关键是,我们将利用我们的
9过去在安全基因组分析和计算生物学算法专业知识方面的成功,
10解决了安全和大规模执行复杂综合分析的迫切需要。
11目前的隐私保护工具过于昂贵,无法执行复杂的
基因组分析需要12次计算。我们以前利用了高度结构化的性质,
13生物数据和新的优化策略,以实现安全的高效管道
14项全基因组关联研究(GWAS)和药物相互作用预测,
1500万个样本在这个项目中,我们将进一步利用生物医学数据的独特属性
16:(一)为基因组医学开发安全的综合分析方法;(二)开发一种易于使用的
17使用具有高级自动优化的编程环境,以促进采用
18隐私保护分析;以及(iii)促进使用我们的隐私技术,以获得新颖的
19通过多种族群体的大规模协作遗传研究获得的生物学见解。
20与我公司的Amarasinghe(麻省理工学院)和Cho(布罗德研究所)合作,我们的目标是将这些工具应用于
21与我们的合作伙伴一起,在2015年实现第一个多机构,多国安全遗传研究。
22 Swiss Personalized Health Network,UK Biobank,FinnGen,All of Us,NIH NCBI,Broad
23和巴塞罗那超级计算中心(支持信)。我们也会利用我们的隐私-
24种保存方法来研究疾病多基因性状的基因组起源,
25神经影像学和其他临床表型。我们将继续积极整合我们的方法
26转换为社区标准(MPEG-G,GA4GH)。
27.这些目标的成功实现将产生计算方法和开源,
28个易于使用的生产级实施方案,为安全集成打开了大门,
29分析大量敏感的基因组和临床数据。通过我们的合作,
我们将建立这些工具,并应用它们来更好地了解人类疾病的分子原因。
31健康和它的翻译到诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BONNIE BERGER其他文献
BONNIE BERGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BONNIE BERGER', 18)}}的其他基金
Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
- 批准号:
10401890 - 财政年份:2021
- 资助金额:
$ 66.28万 - 项目类别:
Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
- 批准号:
10207091 - 财政年份:2021
- 资助金额:
$ 66.28万 - 项目类别:
Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
- 批准号:
10670057 - 财政年份:2021
- 资助金额:
$ 66.28万 - 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
- 批准号:
10004966 - 财政年份:2020
- 资助金额:
$ 66.28万 - 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
- 批准号:
10212991 - 财政年份:2020
- 资助金额:
$ 66.28万 - 项目类别:
Compressive Genomics for Large Omics Data Sets: Algorithms, Applications and Tools
大型组学数据集的压缩基因组学:算法、应用程序和工具
- 批准号:
9546755 - 财政年份:2013
- 资助金额:
$ 66.28万 - 项目类别:
Compressive genomics for large omics data sets: Algorithms applications & tools
大型组学数据集的压缩基因组学:算法应用
- 批准号:
8849927 - 财政年份:2013
- 资助金额:
$ 66.28万 - 项目类别:
Compressive genomics for large omics data sets: Algorithms applications & tools
大型组学数据集的压缩基因组学:算法应用
- 批准号:
8599836 - 财政年份:2013
- 资助金额:
$ 66.28万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 66.28万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 66.28万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 66.28万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 66.28万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 66.28万 - 项目类别:
Standard Grant