Compressive Genomics for Large Omics Data Sets: Algorithms, Applications and Tools

大型组学数据集的压缩基因组学:算法、应用程序和工具

基本信息

  • 批准号:
    9546755
  • 负责人:
  • 金额:
    $ 35.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-05 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary    High-throughput experimental technologies are generating increasingly massive and complex genomic sequence data sets. While these data hold the promise of uncovering entirely new biology, their sheer enormity threatens to make their interpretation computationally infeasible. The continued goal of this project is to design and develop innovative compression-based algorithmic techniques for efficiently processing massive biological data. We will branch out beyond compressive search to address the imminent need to securely store and process large-scale genomic data in the cloud, as well as to gain insights from massive metagenomic data.     The key underlying observation is that genomic data is highly structured, exhibiting high degrees of self-similarity. In our previous granting period, we exploited its high redundancy and low fractal dimension to enable scalable compressive storage and acceleration for search of sequence data as well as other biological data types relevant to structural bioinformatics and chemogenomics. In this renewal, we will continue to capitalize on the structure (i.e., compressibility) of genomic data to: (i) overcome privacy concerns that arise in sharing sensitive human data (e.g. on the cloud); (ii) address new challenges, beyond search, with metagenomic data; and (iii) seek to widen the adoption of the previous and newly-proposed compressive algorithms for industry, research, and clinical use. We will demonstrate the utility of our compressive techniques to the characterization of human genomic and metagenomic variation.   We will collaborate with co-I Sahinalp's lab (Indiana University, Bloomington) on developing and applying these tools to high-throughput data sets including autism spectrum disorder (with Isaac Kohane and Evan Eichler) and cancer (with PCAWG, Pan Cancer Analysis of Whole Genomes), the microbiome (with Eric Alm and Jian Peng), as well as human variation analysis (GATK, with Eric Lander and Eric Banks). The broad, long-term goal is to apply our compressive approach to massive biological data sets to elucidate the still obscure molecular landscape of diseases.    Successful completion of these aims will result in computational methods and tools that will significantly increase our ability to securely store, access and analyze massive data sets and will reveal fundamental aspects of genetic variation, as well as testable hypotheses for experimental investigations. Not only will all developed software be made publicly available, but as part of our integration aim, we will also ensure that the research community can make use of our innovations with minimal effort. Through our research collaborations, we will both build these tools and demonstrate their relevance to the characterization of human health and disease.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BONNIE BERGER其他文献

BONNIE BERGER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BONNIE BERGER', 18)}}的其他基金

Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
  • 批准号:
    10401890
  • 财政年份:
    2021
  • 资助金额:
    $ 35.02万
  • 项目类别:
Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
  • 批准号:
    10207091
  • 财政年份:
    2021
  • 资助金额:
    $ 35.02万
  • 项目类别:
Manifold representations and active learning for 21 st century biology
21 世纪生物学的流形表示和主动学习
  • 批准号:
    10670057
  • 财政年份:
    2021
  • 资助金额:
    $ 35.02万
  • 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
  • 批准号:
    10004966
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
Privacy-preserving genomic medicine at scale
大规模保护隐私的基因组医学
  • 批准号:
    10266081
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
Privacy-preserving genomic medicine at scale
大规模保护隐私的基因组医学
  • 批准号:
    10459604
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
Privacy-preserving genomic medicine at scale
大规模保护隐私的基因组医学
  • 批准号:
    10662349
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
  • 批准号:
    10212991
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
Compressive genomics for large omics data sets: Algorithms applications & tools
大型组学数据集的压缩基因组学:算法应用
  • 批准号:
    8849927
  • 财政年份:
    2013
  • 资助金额:
    $ 35.02万
  • 项目类别:
Compressive genomics for large omics data sets: Algorithms applications & tools
大型组学数据集的压缩基因组学:算法应用
  • 批准号:
    8599836
  • 财政年份:
    2013
  • 资助金额:
    $ 35.02万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了