Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
基本信息
- 批准号:10461194
- 负责人:
- 金额:$ 39.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmic AnalysisAlgorithmsAreaBiologicalBiological AssayCellsCharacteristicsClinicalCollaborationsComplexComputer softwareDataData SetDevelopmentDiagnostic testsDimensionsDiseaseEnsureEnvironmental Risk FactorEpidemiological trendFoundationsImmuneImmune responseImmune systemImmunityImmunodiagnosticsImmunologic MonitoringImmunological ModelsImmunologicsImmunotherapyKnowledgeLaboratoriesMachine LearningMeasurementMeasuresMedical HistoryModalityModelingNaturePatientsPopulationProductionProteomeReproducibilityResearchSeriesSocioeconomic FactorsSystemTechnologyVisualizationWorkbasebiobankbiological systemscohortflexibilitygenome analysislearning strategymachine learning algorithmmetabolomemicrobiomemultiple omicsopen sourcepatient populationpatient subsetspredict clinical outcomeprogramsresponse
项目摘要
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
In response to an immunological challenge, immune cells act in concert forming complex and dense networks.
A deep understanding of these immune responses is often the first step in developing immune therapies and
diagnostic tests. Multivariate modeling algorithms can simultaneously consider all measured aspects of the
immune system but requires prohibitively larger cohort sizes as technological advancements increase the
number of measurements (a.k.a., “Curse of Dimensionality”). To address this, we propose a series of studies to
develop machine learning algorithms for comprehensive profiling of the immune system in clinical settings.
Particularly, for analysis of the immune system at a single-cell-level, we will leverage the stochastic nature of
clustering algorithms to produce a robust pipeline for prediction of clinical outcomes. Next, we introduce the
immunological Elastic-Net (iEN) algorithm, which addresses both the curse of dimensionality and reproducibility
by integrating prior immunological knowledge into the models.
The cellular systems that govern immunity act through symbiotic interactions with multiple interconnected
biological systems. The simultaneous interrogation of these systems with suitable technologies can reveal
otherwise unrecognized crosstalk. In collaboration with several leading laboratories, we have produced
multiomics datasets (including analysis the genome, proteome, microbiome, and metabolome) in synchronized
groups of patients. Using these coordinated datasets, we will evaluate several algorithms for combining multiple
biological modalities while accounting for the intrinsic characteristics of each assay, to reveal biological cross-
talk across various systems and increase combined predictive power. Importantly, numerous population-
level factors (including medical history, environmental, and socioeconomic factors) significantly impact the
immune system and studies focused on homogenous patient populations often lack generalizability to other
populations. To address this, we will develop machine learning strategies to integrate population-level factors
directly into our immunological data. These models will objectively define subpopulations of patients and enable
flexibility in the coefficients of the models (and hence, the importance of the various biological measurements)
in each group.
This research program will be executed using data from several biorepositories focused on various
diseases. This approach will ensure generalizability of our work to previously unseen datasets and increase the
long-term impact of our findings. Throughout the proposal, a major area of focus is the development of
visualization and model-reduction strategies that lay the foundation for interpretation of complex models. The
machine learning algorithms developed will be readily applicable to a broad range of multiomics and multicohort
studies and will be available as open-source software.
用于临床环境中免疫系统综合建模的机器学习
为了应对免疫挑战,免疫细胞一致行动,形成复杂而密集的网络。
深入了解这些免疫反应通常是开发免疫疗法的第一步,
诊断测试多变量建模算法可以同时考虑环境的所有测量方面。
但随着技术进步,
测量次数(也称为,”(《明史》)。为了解决这个问题,我们提出了一系列研究,
开发机器学习算法,用于在临床环境中全面分析免疫系统。
特别是,对于单细胞水平的免疫系统分析,我们将利用
聚类算法,以产生用于预测临床结果的鲁棒管道。接下来,我们介绍
免疫弹性网络(iEN)算法,解决了维数灾难和再现性
通过将先前的免疫学知识整合到模型中。
控制免疫力的细胞系统通过与多个相互连接的
生物系统。用适当的技术同时询问这些系统可以揭示
否则无法识别的串扰。通过与多家领先的实验室合作,我们生产了
多组学数据集(包括分析基因组、蛋白质组、微生物组和代谢组)
患者群体。使用这些协调的数据集,我们将评估几种算法,
生物学模式,同时考虑每个测定的内在特征,以揭示生物学交叉,
在不同的系统之间进行对话,并提高综合预测能力。重要的是,许多人-
水平因素(包括病史、环境和社会经济因素)显著影响
免疫系统和研究集中在同质患者人群往往缺乏普遍性,以其他
人口。为了解决这个问题,我们将开发机器学习策略,以整合人口水平的因素
直接输入到我们的免疫学数据中这些模型将客观地定义患者亚群,
模型系数的灵活性(因此,各种生物测量的重要性)
在每组中。
这项研究计划将使用来自几个生物储存库的数据执行,这些数据集中在各种
疾病这种方法将确保我们的工作对以前看不见的数据集的普遍性,并增加
我们的研究结果的长期影响。在整个提案中,一个主要关注领域是开发
可视化和模型简化策略为复杂模型的解释奠定了基础。的
开发的机器学习算法将很容易适用于广泛的多组学和多队列
研究,并将作为开源软件提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nima Aghaeepour其他文献
Nima Aghaeepour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nima Aghaeepour', 18)}}的其他基金
Neuropathology of synapses in AD and ADRD
AD 和 ADRD 突触的神经病理学
- 批准号:
10590045 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10251069 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10703364 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10028766 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10682328 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10727034 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10433729 - 财政年份:2020
- 资助金额:
$ 39.43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant