Machine Learning for Integrative Modeling of the Immune System in Clinical Settings

临床环境中免疫系统综合建模的机器学习

基本信息

  • 批准号:
    10251069
  • 负责人:
  • 金额:
    $ 39.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-05 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Machine Learning for Integrative Modeling of the Immune System in Clinical Settings In response to an immunological challenge, immune cells act in concert forming complex and dense networks. A deep understanding of these immune responses is often the first step in developing immune therapies and diagnostic tests. Multivariate modeling algorithms can simultaneously consider all measured aspects of the immune system but requires prohibitively larger cohort sizes as technological advancements increase the number of measurements (a.k.a., “Curse of Dimensionality”). To address this, we propose a series of studies to develop machine learning algorithms for comprehensive profiling of the immune system in clinical settings. Particularly, for analysis of the immune system at a single-cell-level, we will leverage the stochastic nature of clustering algorithms to produce a robust pipeline for prediction of clinical outcomes. Next, we introduce the immunological Elastic-Net (iEN) algorithm, which addresses both the curse of dimensionality and reproducibility by integrating prior immunological knowledge into the models. The cellular systems that govern immunity act through symbiotic interactions with multiple interconnected biological systems. The simultaneous interrogation of these systems with suitable technologies can reveal otherwise unrecognized crosstalk. In collaboration with several leading laboratories, we have produced multiomics datasets (including analysis the genome, proteome, microbiome, and metabolome) in synchronized groups of patients. Using these coordinated datasets, we will evaluate several algorithms for combining multiple biological modalities while accounting for the intrinsic characteristics of each assay, to reveal biological cross- talk across various systems and increase combined predictive power. Importantly, numerous population- level factors (including medical history, environmental, and socioeconomic factors) significantly impact the immune system and studies focused on homogenous patient populations often lack generalizability to other populations. To address this, we will develop machine learning strategies to integrate population-level factors directly into our immunological data. These models will objectively define subpopulations of patients and enable flexibility in the coefficients of the models (and hence, the importance of the various biological measurements) in each group. This research program will be executed using data from several biorepositories focused on various diseases. This approach will ensure generalizability of our work to previously unseen datasets and increase the long-term impact of our findings. Throughout the proposal, a major area of focus is the development of visualization and model-reduction strategies that lay the foundation for interpretation of complex models. The machine learning algorithms developed will be readily applicable to a broad range of multiomics and multicohort studies and will be available as open-source software.
临床免疫系统综合建模的机器学习

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nima Aghaeepour其他文献

Nima Aghaeepour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nima Aghaeepour', 18)}}的其他基金

Neuropathology of synapses in AD and ADRD
AD 和 ADRD 突触的神经病理学
  • 批准号:
    10590045
  • 财政年份:
    2022
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10703364
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10028766
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10461194
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10682328
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10727034
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
  • 批准号:
    10433729
  • 财政年份:
    2020
  • 资助金额:
    $ 39.43万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了