An Investigation of Focal Adhesion Tension During Cardiomyocyte Contraction
心肌细胞收缩过程中局部粘附张力的研究
基本信息
- 批准号:10462935
- 负责人:
- 金额:$ 4.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdhesivesAdrenergic AgentsAdrenergic beta-AgonistsAreaCalciumCardiacCardiac MyocytesCardiac OutputCell AdhesionCell physiologyCellsCellular StructuresCharacteristicsComplexContractsCuesCytoskeletonDataDependenceDistalEnergy TransferEngineeringEsthesiaExtracellular MatrixFeedbackFluorescence Resonance Energy TransferFocal AdhesionsFutureGenerationsGeometryHeart DiseasesHeterogeneityHomeostasisImage AnalysisIndividualInvestigationIsoproterenolKnowledgeLocationMeasurementMeasuresMechanicsMediatingMicrofilamentsModelingMolecularMorphologic artifactsMuscle CellsMyofibrilsPathway interactionsPatternPhysiologicalPhysiologyPositioning AttributePropertyProteinsRGD (sequence)RegulationRelaxationRoleSarcomeresSignal TransductionSpatial DistributionStressStructureTechniquesThin FilamentTimeTractionTroponin CVCL geneVinculinWorkcell typecitrate carrierdata acquisitionexperienceextracellularfightingforce sensorinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesmechanical signalmechanotransductionmicroscopic imagingmutantoverexpressionprotein complexresponsesensorsensor technologystem cellstargeted treatmenttool
项目摘要
PROJECT SUMMARY
Cardiomyocytes sense macro scale mechanical cues to adapt their structure and function, and disturbances of
these mechanical signals can cause a negative feedback loop that leads to changes in cardiomyocyte structure
and ultimately decreased cardiac output. Important to this mechanical sensing are focal adhesions, the
mechanosensitive protein complexes that attach the cell cytoskeleton to the underlying extracellular matrix
(ECM). Although focal adhesions have been shown to be necessary for myofilament maturation and are sensitive
to external substrate characteristics, little is known about the specific forces sensed at these complexes during
the physiological contraction cycle or how this adhesive tension is regulated by cardiomyocyte contractility.
Furthermore, alterations of cardiomyocyte contractile tension initiate maladaptive cell remodeling, but this
mechanism and the involvement of focal adhesions are poorly understood. Given that focal adhesions of other
cell types have been shown to distribute focal adhesion tension unevenly within individual cells and
microdomains and that there are regional heterogeneities in cardiomyocyte strain, it is important to understand
the spatial distribution of mechanosensing in cardiomyocytes as the myofibrils contract against the ECM. This
proposal aims to fill the crucial gap in knowledge of the role of focal adhesions and their interactions with both
the myofibril structures and the ECM for the mechanical homeostasis of contracting cardiomyocytes. Previous
studies of focal adhesion sensation during contraction have been limited by the inability to measure exact force
across the focal adhesions in a time and spatially resolved manner. A recently developed tool that has been
used to study mechanically driven cell processes is the FRET (Förster Resonant Energy Transfer) tension
sensor, which I have engineered to express endogenously in induced pluripotent stem cells within the focal
adhesion gene vinculin. Preliminary data from stem cell derived cardiomyocytes that express this sensor show
myofibril contraction confers an increase in global focal adhesion tension sensation in static cells. However, the
spatial and temporal generation of force in cardiomyocytes during contraction is not yet known and will be
examined in this project using cutting edge microscopy and image analysis techniques. Importantly, this model
overcomes previous limitations of overexpression artifacts or inconsistent sensor expression. Thus, I propose to
first quantify spatial and temporal physiological focal adhesion tension during static and dynamic cardiomyocyte
contraction. Second, I will modulate both the inherent contractility of cardiomyocytes and their connection to the
ECM to determine the internal and external regulation of focal adhesion tension in cardiomyocytes. These aims
will provide a complete understanding of focal adhesion tension generation during CM contraction. This
understanding may inform future studies to develop better targeted therapies to maintain mechanical
homeostasis in heart disease.
项目摘要
心肌细胞感受宏观尺度的机械线索,以适应其结构和功能,
这些机械信号可以引起负反馈回路,
最终导致心输出量下降对于这种机械感测重要的是局灶性粘连,
机械敏感蛋白复合物,其将细胞骨架附着于下层细胞外基质
(ECM)。虽然局灶性粘连已被证明是必要的肌丝成熟和敏感
到外部基底特性,很少有人知道在这些复合物中感测到的特定力,
生理收缩周期或这种粘附张力如何由心肌细胞收缩性调节。
此外,心肌细胞收缩张力的改变启动了适应不良的细胞重塑,但这一改变可能导致心肌细胞收缩力的降低。
机制和参与局灶性粘连知之甚少。考虑到其他组织的局灶性粘连
细胞类型已显示在单个细胞内不均匀地分布粘着斑张力,
微结构域和心肌细胞株中存在区域异质性,重要的是要了解
当肌原纤维收缩对抗ECM时,心肌细胞中机械感测的空间分布。这
该提案旨在填补对局灶性粘连的作用及其与两者相互作用的认识方面的关键空白
肌原纤维结构和ECM用于收缩心肌细胞的机械稳态。先前
由于不能测量精确的力
以时间和空间分辨的方式穿过粘着斑。最近开发的一种工具,
用于研究机械驱动细胞过程的是FRET(福斯特共振能量转移)张力
传感器,我已经设计了内源性表达的诱导多能干细胞内的病灶
粘着斑蛋白基因来自表达这种传感器的干细胞衍生的心肌细胞的初步数据显示,
肌原纤维收缩使静态细胞的全局局灶性粘附张力感觉增加。但
在收缩期间心肌细胞中力的空间和时间产生尚不清楚,
在这个项目中使用先进的显微镜和图像分析技术进行了检查。重要的是,这种模式
克服了先前过度表达伪像或不一致的传感器表达的限制。因此,我建议
第一次量化静态和动态心肌细胞过程中的空间和时间生理性局灶性粘附张力
收缩。第二,我将调节心肌细胞固有的收缩性及其与心肌细胞的连接。
ECM来确定心肌细胞中粘着斑张力的内部和外部调节。这些目标
将提供一个完整的理解,在CM收缩过程中的焦点粘附张力的产生。这
了解可能会为未来的研究提供信息,以开发更好的靶向治疗,以维持机械
心脏病的体内平衡
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abigail Nagle其他文献
Abigail Nagle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abigail Nagle', 18)}}的其他基金
An Investigation of Focal Adhesion Tension During Cardiomyocyte Contraction
心肌细胞收缩过程中局部粘附张力的研究
- 批准号:
10725111 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 4.04万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 4.04万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Investment Accelerator