Deep learning for spatial population genetics

空间群体遗传学的深度学习

基本信息

  • 批准号:
    10464822
  • 负责人:
  • 金额:
    $ 6.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Understanding spatial genetic variation is tremendously valuable for medical genetics, understanding human population history, identifying the geographic origin of samples, and management of disease vectors. However while organisms in natural populations disperse a limited distance from their birth location, most population genetic models do not account for such genetic isolation over space, and instead treat populations as composed of discrete demes. Moreover, dispersal rate and population density often vary across the landscape due to heterogeneous environmental conditions, population structure, or simply geography. These modeling violations have real world implications, for example, in correcting genome-wide association for hidden population structure (Berg et al., 2019; Sohail et al., 2019; Battey et al. 2020a; Zaidi and Mathieson, 2020). In this proposal we aim to develop a genomics toolset for inferring spatial population genetic parameters through the use of deep learning. One strategy for dealing with geo-referenced genomic data is to train a deep neural network (DNN) to identify useful information in the data in an automated fashion. DNNs can be trained on simulated data, which bypasses the need to obtain empirical data for training. In this proposal we present the first use of DNNs for inference of spatial population genetic parameters. The proposal has three Specific Aims: 1) we will develop a method that uses DNNs to estimate spatially varying dispersal rates from geo-referenced DNA samples, 2) we will modify our deep learning tool to infer the additional demographic parameter of population density across space and 3) lastly, we will apply our method to infer dispersal rate and density in two important empirical systems for which geo-referenced genomic data are available: Anopheles gambiae, and in humans. Our approach for inferring spatial demographic processes will directly inform empirical applications such as genome wide association studies and disease vector control, as well as lay the groundwork for other spatial population genetic inquiries. The postdoctoral fellow will receive rigorous training in cutting edge computational techniques relevant to deep learning and statistical and quantitative methods in spatial population genetics. The sponsoring labs have abundant computational resources to support the proposed research. In addition, the University of Oregon houses an NSF-supported center for machine learning which will provide incredible opportunities for the fellow. Additional training will include preparation of grant proposals and first author manuscripts, presenting at conferences, advising undergraduate thesis projects, and mentored teaching in-classroom.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris C Smith其他文献

Chris C Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Functional Analysis of Resistance to Pyrethroid Insecticides in the malaria vector Anopheles gambiae
疟疾媒介冈比亚按蚊对拟除虫菊酯类杀虫剂抗性的功能分析
  • 批准号:
    MR/W002159/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Research Grant
Investigating the role of vitellogenin in Anopheles gambiae immunity
研究卵黄蛋白原在冈比亚按蚊免疫中的作用
  • 批准号:
    545866-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigating the role of vitellogenin in Anopheles gambiae immunity
研究卵黄蛋白原在冈比亚按蚊免疫中的作用
  • 批准号:
    545866-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A chromosome-level genome assembly for the major African malaria vector Anopheles gambiae
主要非洲疟疾载体冈比亚按蚊的染色体水平基因组组装
  • 批准号:
    10343852
  • 财政年份:
    2021
  • 资助金额:
    $ 6.72万
  • 项目类别:
A chromosome-level genome assembly for the major African malaria vector Anopheles gambiae
主要非洲疟疾载体冈比亚按蚊的染色体水平基因组组装
  • 批准号:
    10192080
  • 财政年份:
    2021
  • 资助金额:
    $ 6.72万
  • 项目类别:
Investigating the role of vitellogenin in Anopheles gambiae immunity
研究卵黄蛋白原在冈比亚按蚊免疫中的作用
  • 批准号:
    545866-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Monitoring the development of resistance to the novel insecticide clothianidin in Anopheles gambiae
监测冈比亚按蚊对新型杀虫剂噻虫胺的抗药性发展
  • 批准号:
    10155410
  • 财政年份:
    2020
  • 资助金额:
    $ 6.72万
  • 项目类别:
Monitoring the development of resistance to the novel insecticide clothianidin in Anopheles gambiae
监测冈比亚按蚊对新型杀虫剂噻虫胺的抗药性发展
  • 批准号:
    10401817
  • 财政年份:
    2020
  • 资助金额:
    $ 6.72万
  • 项目类别:
Monitoring the development of resistance to the novel insecticide clothianidin in Anopheles gambiae
监测冈比亚按蚊对新型杀虫剂噻虫胺的抗药性发展
  • 批准号:
    10622489
  • 财政年份:
    2020
  • 资助金额:
    $ 6.72万
  • 项目类别:
Ionotropic Receptor Function in Anopheles gambiae
冈比亚按蚊的离子型受体功能
  • 批准号:
    9540145
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了