Predicting Antidepressant Response Early in Treatment Using Neuroimaging To Assist Clinicians With Treatment Planning
使用神经影像学在治疗早期预测抗抑郁反应,以协助临床医生制定治疗计划
基本信息
- 批准号:10464662
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AftercareAlgorithmic AnalysisAlgorithmsAntidepressive AgentsAreaBrainBrain imagingBrain regionCerebrovascular CirculationCharacteristicsClinicalClinical Decision Support SystemsConsensusDataData SetDepressed moodDetectionDimensionsDisease remissionDouble-Blind MethodEarly treatmentEconomic BurdenElectroencephalographyEngineeringFailureFunctional disorderFutureGoalsHamilton Rating Scale for DepressionImageImaging TechniquesIndividualLearningLocationMachine LearningMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMedicalMental DepressionModelingMonitorMotor ActivityNational Institute of Mental HealthNeuronsParticipantPathologicPathologyPatientsPerformancePhysiciansPlacebosPositioning AttributePredictive AnalyticsPrincipal Component AnalysisPsychiatryResearchResearch DesignSample SizeSamplingScientistSeveritiesSleepStatistical Data InterpretationStructureSuicideTechniquesTestingTimeTrainingTreatment EfficacyTreesWorkarterial spin labelingbaseclinical decision-makingcost effectivedepressive symptomsgradient boostinghigh dimensionalityimaging biomarkerimaging modalityimaging studyimprovedinsightlarge datasetslongitudinal analysismachine learning algorithmmachine learning modelneuroimagingnovelnovel therapeuticsprediction algorithmpredictive markerpredictive modelingpredictive toolspreservationpreventrelating to nervous systemresponsesuccesstooltreatment planningtreatment response
项目摘要
Ali 1
PROJECT SUMMARY
There is a pressing need for predicting antidepressant response early in treatment to reduce patient suffering
and economic burden. Conventional antidepressants typically require two months to determine efficacy, and
two-thirds of patients will not remit (be free of depression) while on their first-line treatment. No study to date has
identified clinically useful markers to predict antidepressant response early in treatment. Therefore, the long-
term
objective
of this project is to develop a predictive algorithm for antidepressant treatment efficacy early in
treatment by using noninvasive brain imaging. The
central hypothesis
of this proposal is that brain changes,
assessed by imaging, can be used as early predictors of antidepressant response.
Magnetic resonance imaging (MRI) can provide valuable information about brain structure and function
through various techniques early in treatment that may relate to the final response to antidepressant treatment.
Even though these imaging techniques have been used to predict antidepressant response, the findings have
been inconsistent, most likely due to variable study design and small sample size, and none of the imaging
markers have been clinically validated. To fill these gaps, I will use a recently acquired imaging data from a large
sample of patients at their initiation and first week of treatment, and their depression severity was quantified
regularly by expert clinicians, to build a prediction model for antidepressant efficacy through the following aims.
1) Aim 1: Compare brain images acquired before and after antidepressant treatment to identify
regions that need to change for the treatment to be effective. I will use imaging from a moderately large data
set where patients with major depressive disorder (MDD) were imaged before and after 8 weeks of
antidepressant treatment. I will measure brain structures and their activity in individuals who got better with
treatment and analyze if there is significant difference in any brain regions in their depressive state compared to
remitted state. I will then explore those regions in a large imaging data set to see if these necessary brain
changes can be detected early in the first week of treatment.
2) Aim 2: Examine brain changes from the first week of treatment based on brain imaging and
incorporate them into a predictive model for antidepressant efficacy. I will reduce the number of features
related to brain structure and activity without losing information about the data. The selected features will be
entered in a machine learning algorithm called XGBoost, which is time-efficient and cost-effective and has been
used for detecting depression with moderate success. The model will rank features based on their contribution
to prediction of antidepressant efficacy. If treatment response is found to be unrelated to imaging, this will inform
future alternative imaging (e.g., EEG) or non-imaging (e.g., sleep, motor activity or location) studies.
Impact
: If successful, the proposed work will have broad implications for early monitoring of
antidepressant efficacy and application of an effective clinical decision-making tool for treatment planning.
Page 1 of 1
阿里1
项目摘要
迫切需要在治疗早期预测抗抑郁反应以减少患者的痛苦
和经济负担。常规抗抑郁药通常需要两个月才能确定功效,并且
在一线治疗时,三分之二的患者将不累积(没有抑郁症)。迄今为止没有学习
确定了临床上有用的标记,可以预测治疗早期抗抑郁反应。因此,长期
学期
客观的
该项目的是开发一种预测算法,以提高抗抑郁治疗功效
通过使用无创脑成像进行处理。这
中央假设
该建议是大脑变化,
通过成像评估,可以用作抗抑郁反应的早期预测指标。
磁共振成像(MRI)可以提供有关大脑结构和功能的宝贵信息
通过在治疗早期的各种技术中,可能与抗抑郁药治疗的最终反应有关。
即使这些成像技术已被用来预测抗抑郁反应,但这些发现还是
不一致,很可能是由于可变的研究设计和较小的样本量,而没有成像
标记已通过临床验证。为了填补这些空白,我将使用来自大型的最近获得的成像数据
患者在开始时和治疗的第一周的样本,并量化了抑郁症的严重程度
专家临床医生经常通过以下目的建立抗抑郁功效的预测模型。
1)目标1:比较抗抑郁治疗前后获得的脑图像以识别
需要改变以使治疗有效的区域。我将使用中等大数据中的成像
在8周之前和之后对患有重度抑郁症(MDD)的患者(MDD)的设置
抗抑郁治疗。我将衡量大脑结构及其在变得更好的个人中的活动
治疗和分析与其抑郁状态的任何大脑区域是否存在显着差异
汇出状态。然后,我将在大型成像数据集中探索这些区域,以查看这些大脑是否必要
可以在治疗的第一周初检测到变化。
2)目标2:检查基于脑成像的治疗第一周的大脑变化
将它们纳入抗抑郁疗效的预测模型中。我将减少功能数量
与大脑结构和活动有关,而不会丢失有关数据的信息。选定的功能将是
输入一种称为XGBoost的机器学习算法,该算法是时间效率且具有成本效益的,已经是
用于检测抑郁症的中等成功。该模型将根据其贡献对特征进行排名
预测抗抑郁药的功效。如果发现治疗反应与成像无关,这将告知
未来的替代成像(例如,脑电图)或非成像(例如睡眠,运动活动或位置)研究。
影响
:如果成功,拟议的工作将对早期监控有广泛的影响
抗抑郁药的功效和有效的临床决策工具用于治疗计划。
第1页,共1页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farzana Zulfiqur Ali其他文献
Farzana Zulfiqur Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farzana Zulfiqur Ali', 18)}}的其他基金
Predicting Antidepressant Response Early in Treatment Using Neuroimaging To Assist Clinicians With Treatment Planning
使用神经影像学在治疗早期预测抗抑郁反应,以协助临床医生制定治疗计划
- 批准号:
10577901 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
相似国自然基金
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 4.4万 - 项目类别:
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
- 批准号:
10376033 - 财政年份:2021
- 资助金额:
$ 4.4万 - 项目类别:
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
- 批准号:
10231345 - 财政年份:2021
- 资助金额:
$ 4.4万 - 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
- 批准号:
10285226 - 财政年份:2021
- 资助金额:
$ 4.4万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 4.4万 - 项目类别: