Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)

多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)

基本信息

项目摘要

PROJECT SUMMARY Oral cavity and oropharyngeal (OC/OPC) cancers afflict more than 53,000 individuals in the United States annually. Despite advancements in oncologic therapies, the majority of patients will experience significant toxicity burden during and after therapy, including moderate-severe xerostomia, reduced mouth opening (i.e. trismus), periodontal disease, and osteoradionecrosis. To date, acute and chronic orodental complications are largely managed by clinicians and dentists based on empirical knowledge, with wide inter-provider management variability influenced by provider experience and available clinical information which is often incomplete, incorrect, or nonexistent. To further complicate long-term care of OC/OPC survivors, there is no standardized method for communicating with dentists the extent and intensity of radiation doses delivered to tooth bearing areas which is vital information for accurate assessment of risks related to dental procedures. Therefore, development of a standardized radiotherapy dental information tool and data-driven, algorithmic toxicity risk prediction models for enhanced communication and personalized medicine for OC/OPC survivors remains an unmet public health need. In response to NIDCR’s NOT-DE-20-006, we herein propose a rigorous and reproducible application of informatics and computational methods and approaches for the development of machine learning “ML/AI based optimization of clinical procedures for precision dental care”, “novel and robust data analysis algorithms to tackle causal mechanisms of action for onset and progression of disease” related to posttherapy orodental complications, and “computational modeling for treatment planning and assessment of treatment outcomes.” In Specific Aim 1, we will train and validate a deep learning contouring (DLC) neural network for automatic delineation of tooth-bearing regions. Our collaborator, Dr. van Dijk, has previous experience with DLC design and application for auto- delineation of non-dental head and neck organs at risk (OAR). Her research, published in a peer- reviewed journal showing an equal or significantly improved OAR automatic delineation using DLC over atlas-based contouring, will serve as a reproducible model for our proposed project. Using DLC-based mandibular and dental OAR delineation (SA 1), we will develop a novel “radiation odontogram” which will generate automated and accurate summative radiotherapy dose distribution mapping reports for effective data transmission and communication among providers (SA 2). Accurate prognosis and management of high-morbidity high-prevalence post- therapy orodental sequelae will be enabled through the development of a statistically robust machine-learning based model of toxicity risk predictions that incorporates patient- and provide- generated data (Aim 3). In summary, the RADMAP proposal fosters innovative informatics and computational modeling approaches to address existing challenges in multidisciplinary communication and precision dental care for OC/OPC survivors, with practice-changing implications in the clinical setting and for oral, dental, and craniofacial research.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
National Institutes of Health Diversity Supplement Awards: Experience of Radiation Oncology Principal Investigators and Trainees.
美国国立卫生研究院多样性补充奖:放射肿瘤学首席研究员和实习生的经验。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Catherine Moreno其他文献

3117 Knowledge-based autoplanning improves efficiency and plan quality for larynx stereotactic radiotherapy
基于知识的自动计划提高了喉立体定向放射治疗的效率和计划质量
  • DOI:
    10.1016/s0167-8140(25)01497-5
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Yao Zhao;Dong Joo Rhee;Congjun Wang;Tucker Netherton;Sara Lynn Thrower;Kelli McSpadden;Xin Wang;Anna Lee;Amy Catherine Moreno;David Rosenthal;Jack Phan;He Wang
  • 通讯作者:
    He Wang

Amy Catherine Moreno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Catherine Moreno', 18)}}的其他基金

Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
  • 批准号:
    10655430
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
  • 批准号:
    10449579
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
  • 批准号:
    10285226
  • 财政年份:
    2021
  • 资助金额:
    $ 7.87万
  • 项目类别:

相似国自然基金

基于语义理解的中文地址匹配关键技术研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于众源地址数据的标准地址集智能化构建方法研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向空间语义建模与检索的城市地址图模型研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
新型智慧城市地名地址数据融合治理关键技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于SDN的动目标防御网络关键技术研究
  • 批准号:
    61702535
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了