Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
基本信息
- 批准号:10285226
- 负责人:
- 金额:$ 20.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-02 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptionAftercareAgreementAlgorithmic AnalysisAlgorithmsAnatomyAreaArtificial IntelligenceAtlasesAwardBioinformaticsCancer PatientCancer SurvivorCaringChronicClinicalClinical ManagementCombined Modality TherapyCommunicationComputer ModelsComputing MethodologiesConsensusDataData AggregationData AnalysesDecision MakingDelphi TechniqueDentalDental CareDentistryDentistsDevelopmentDiseaseDisease ProgressionDocumentationDoseExploratory/Developmental Grant for Diagnostic Cancer ImagingFAIR principlesFosteringFoundationsFutureGoalsHead and neck structureHealthHigh PrevalenceIndividualInformaticsIntensity modulated proton therapyIntensity-Modulated RadiotherapyInterdisciplinary CommunicationJournalsKnowledgeLabelLate EffectsLong-Term CareMachine LearningMandibleManualsManuscriptsMedicalMethodologyMethodsModelingMonitorMorbidity - disease rateNational Institute of Dental and Craniofacial ResearchNeeds AssessmentOperative Surgical ProceduresOralOral cavityOral healthOrganOsteoradionecrosisOutcomeOutcome AssessmentParotid GlandPatientsPeer ReviewPeriodontal DiseasesPhasePilot ProjectsProceduresPrognosisProviderPublic HealthPublishingRadiationRadiation Dose UnitRadiation OncologistRadiation therapyReportingReproducibilityResearchResolutionResourcesRiskRisk AssessmentSelection for TreatmentsSeveritiesStandardizationStructureSurvivorsSymptomsSystemTechniquesTimeTooth structureToxic effectTrainingTreatment outcomeTrismusUnited StatesValidationX-Ray Computed TomographyXerostomiabasecohortconvolutional neural networkcraniofacialdeep learningdesignexperienceimprovedinnovationinterestlearning strategymachine learning methodmalignant oropharynx neoplasmneural networknovelpersistent symptompersonalized managementpersonalized medicineprospectiveresponserisk predictionrisk prediction modelsurvival outcomesymptom managementtooltreatment optimizationtreatment planning
项目摘要
PROJECT SUMMARY
Oral cavity and oropharyngeal (OC/OPC) cancers afflict more than 53,000 individuals in the United States
annually. Despite advancements in oncologic therapies, the majority of patients will experience significant toxicity
burden during and after therapy, including moderate-severe xerostomia, reduced mouth opening (i.e. trismus),
periodontal disease, and osteoradionecrosis. To date, acute and chronic orodental complications are largely
managed by clinicians and dentists based on empirical knowledge, with wide inter-provider management
variability influenced by provider experience and available clinical information which is often incomplete,
incorrect, or nonexistent. To further complicate long-term care of OC/OPC survivors, there is no standardized
method for communicating with dentists the extent and intensity of radiation doses delivered to tooth bearing
areas which is vital information for accurate assessment of risks related to dental procedures. Therefore,
development of a standardized radiotherapy dental information tool and data-driven, algorithmic toxicity risk
prediction models for enhanced communication and personalized medicine for OC/OPC survivors remains an
unmet public health need. In response to NIDCR’s NOT-DE-20-006, we herein propose a rigorous and
reproducible application of informatics and computational methods and approaches for the development of
machine learning “ML/AI based optimization of clinical procedures for precision dental care”, “novel and robust
data analysis algorithms to tackle causal mechanisms of action for onset and progression of disease” related to
posttherapy orodental complications, and “computational modeling for treatment planning and assessment of
treatment outcomes.” In Specific Aim 1, we will train and validate a deep learning contouring (DLC) neural
network for automatic delineation of tooth-bearing regions. Our collaborator, Dr. van Dijk, has previous
experience with DLC design and application for auto-delineation of non-dental head and neck organs at risk
(OAR). Her research, published in a peer-reviewed journal showing an equal or significantly improved OAR
automatic delineation using DLC over atlas-based contouring, will serve as a reproducible model for our
proposed project. Using DLC-based mandibular and dental OAR delineation (SA 1), we will develop a novel
“radiation odontogram” which will generate automated and accurate summative radiotherapy dose distribution
mapping reports for effective datatransmission and communication among providers (SA 2). Accurate prognosis
and management of high-morbidity high-prevalence post-therapy orodental sequelae will be enabled through
the development of a statistically robust machine-learning based model of toxicity risk predictions that
incorporates patient- and provide-generated data(Aim 3). In summary, the RADMAP proposal fosters innovative
informatics and computational modeling approaches to address existing challenges in multidisciplinary
communication and precision dental care for OC/OPC survivors, with practice-changing implications in the
clinical setting and for oral, dental, and craniofacial research.
项目总结
在美国,口腔和口咽癌(OC/OPC)困扰着超过53,000人
每年一次。尽管肿瘤治疗取得了进步,但大多数患者仍将经历严重的毒性反应。
治疗期间和治疗后的负担,包括中到重度口干症,张口度降低(即三张嘴),
牙周病和放射性骨坏死。到目前为止,急性和慢性口腔并发症主要是
由临床医生和牙医根据经验知识进行管理,并具有广泛的提供者间管理
受提供者经验和可用临床信息影响的可变性通常是不完整的,
不正确或不存在。为了进一步使对OC/OPC幸存者的长期护理复杂化,没有标准化的
与牙科医生沟通对牙齿轴承辐射剂量的范围和强度的方法
对于准确评估与牙科手术相关的风险而言,这是至关重要的信息。因此,
开发标准化的放射治疗牙科信息工具和数据驱动的算法毒性风险
OC/OPC幸存者加强沟通和个性化医疗的预测模型仍是一个
未得到满足的公共卫生需求。为了回应NIDCR的NOT-DE-20-006,我们在此提出了一个严格和
发展信息学和计算方法和途径的可重复应用
机器学习《基于ML/AI的精准牙科临床流程优化》,《新颖而稳健》
处理疾病发生和发展的因果作用机制的数据分析算法“与
治疗后口腔并发症,以及“用于治疗计划和评估的计算模型”
治疗结果。“在具体目标1中,我们将训练和验证深度学习轮廓(DLC)神经网络
用于自动划定牙齿承载区域的网络。我们的合作者范·迪克博士之前
DLC设计和应用于非牙科头颈部高危器官自动勾画的经验
(划桨)。她的研究发表在同行评议期刊上,显示出同等或显著改善的Oar
在基于地图集的等高线上使用DLC进行自动描绘,将作为我们的
建议的项目。使用基于DLC的下颌和牙桨描绘(SA 1),我们将开发一种新的
将自动生成精确的终结性放射治疗剂量分布的“放射牙片”
为供应商之间的有效数据传输和通信绘制报告图(SA 2)。准确预测
和管理高发病率、高患病率的治疗后口腔后遗症将能够通过
基于统计稳健机器学习的毒性风险预测模型的开发
合并患者和提供者生成的数据(目标3)。总而言之,RADMAP提案促进了创新
解决多学科现有挑战的信息学和计算建模方法
对OC/OPC幸存者的沟通和精确牙科护理,具有改变实践的影响
临床环境和口腔、牙科和颅面研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Catherine Moreno其他文献
3117 Knowledge-based autoplanning improves efficiency and plan quality for larynx stereotactic radiotherapy
基于知识的自动计划提高了喉立体定向放射治疗的效率和计划质量
- DOI:
10.1016/s0167-8140(25)01497-5 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Yao Zhao;Dong Joo Rhee;Congjun Wang;Tucker Netherton;Sara Lynn Thrower;Kelli McSpadden;Xin Wang;Anna Lee;Amy Catherine Moreno;David Rosenthal;Jack Phan;He Wang - 通讯作者:
He Wang
Amy Catherine Moreno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Catherine Moreno', 18)}}的其他基金
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10655430 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10449579 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 20.89万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 20.89万 - 项目类别:
Research Grant