Editing of the AAT locus using novel base editing and prime editing technologies
使用新颖的碱基编辑和 Prime 编辑技术编辑 AAT 基因座
基本信息
- 批准号:10463808
- 负责人:
- 金额:$ 54.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenineAdultAffectAirway DiseaseAllelesAnimal ModelAntibodiesAntigensBlood CirculationCandidate Disease GeneCapsidClustered Regularly Interspaced Short Palindromic RepeatsDNA RepairDeaminaseDependovirusDiseaseDisease modelEndonuclease IEngineeringGTP-Binding Protein alpha Subunits, GsGenerationsGenesGenomicsGoalsGuanosineGuide RNAHepatocyteHuman GeneticsImmuneImmune responseImmunologyIndividualInosineLeukocyte ElastaseLiverLiver diseasesLungMeasuresMediatingMendelian disorderModelingMusMutationOrganPatientsPhenotypePhysiologyPoint MutationPolymersProteinsPulmonary EmphysemaRNA EditingRNA-Directed DNA PolymeraseRegulatory T-LymphocyteSafetySerine Proteinase InhibitorsSerumSpecificityT cell responseTechnologyTherapeuticTransgenic MiceVariantViralWorkadenosine deaminasealpha 1-Antitrypsin Deficiencybasebase editingbase editorcell typeclinically relevantgene correctiongene therapygenotoxicityimprovedin vivomouse modelmutantnovelpre-clinicalprime editingprime editorprotein aggregationrepairedresponsesynergismtoolvector
项目摘要
PROJECT 2 - Project Summary/Abstract
Gene editing has the potential to correct mutations and provide long-term therapeutic benefit for patients with
rare monogenic diseases like alpha-1 antitrypsin deficiency (AATD). AATD is caused by mutations in the AAT
(or PI) gene, which encodes a serine protease inhibitor that is made in hepatocytes and delivered to lung to
neutralize neutrophil elastase. The PI*Z mutation encodes mutant Z-AAT protein that aggregates in
hepatocytes, which can cause liver disease and reduces serum AAT. Reduced serum AAT causes progressive
airway disease and emphysema. Gene correction would address both aspects of AATD.
CRISPR-mediated homology directed repair (HDR) can be used to partially correct mutations in mouse liver.
Yet, HDR is limited by the need to deliver a long DNA repair template, its inefficiency in non-dividing or slow-
dividing cell types, and its generation of genotoxic double-strand breaks. To address these limitations, this
proposal will develop two CRISPR-based gene correction strategies that do not require a double-strand break:
prime editing and adenine base editing. Prime editor (PE) is comprised of Cas9 nickase fused to reverse
transcriptase and an extended guide RNA that doubles as a template for reverse transcriptase to copy editing
information into the genomic target. Adenine base editor (ABE), comprised of a Cas9 nickase fused to an
adenosine deaminase, can correct G-to-A point mutations in mouse liver. The PI*Z allele results from a G-to-A
mutation; and thus, is a good candidate for gene correction via ABE and PE.
The goal of this project is to optimize PE and ABE tools for AAT gene correction in vivo by developing ABE
and PE vectors that can be accommodated by adeno-associated virus (AAV) capsids; maximizing on-target
editing and minimizing off-target editing; and determining how immune responses affect editing. Aim 1 will
develop novel PE tools for in vivo AAT gene correction. A split AAV PE platform will be developed to maximize
prime editing efficiency in vivo, then PE gene correction and lung phenotype will be measured in a PI*Z
transgenic mouse model and a clinically-relevant AAT null/PI*Z mouse model. Aim 2 will enhance the
specificity of ABE for in vivo AAT gene correction. Long-term ABE expression can induce off-target editing.
Therefore, new ABE variants will be optimized to increase activity and reduce RNA editing effects, and split
AAV delivery of ABE will be investigated in a PI*Z model. This Aim will also develop self-inactivating ABE to
reduce off-target effects. Aim 3 will characterize and mitigate immune responses to PE and ABE, which harbor
viral reverse transcriptase and bacterial TadA protein, respectively, and Cas9, a known antigen. This Aim will
investigate antibody and T cell response to PE and ABE in mice, how immune response regulates editing, and
whether CAR-Treg can mitigate immune response. Project 2 will benefit from extensive interactions with the
other projects and cores in this P01. Completing this project will improve the efficiency and safety of PE and
ABE in vivo, providing an HDR-independent gene editing blueprint for AATD, and other monogenic diseases.
项目2 -项目概要/摘要
基因编辑有可能纠正突变并为患有以下疾病的患者提供长期治疗益处
罕见的单基因疾病,如α-1抗胰蛋白酶缺乏症(AATD)。AATD是由AAT基因突变引起的。
(or PI)基因,其编码丝氨酸蛋白酶抑制剂,该丝氨酸蛋白酶抑制剂在肝细胞中产生并递送至肺,
中和中性粒细胞弹性蛋白酶。PI*Z突变编码突变体Z-AAT蛋白,其在细胞中聚集。
肝细胞,其可导致肝脏疾病并降低血清AAT。血清AAT降低导致进行性
呼吸道疾病和肺气肿。基因校正将解决AATD的两个方面。
CRISPR介导的同源定向修复(HDR)可用于部分纠正小鼠肝脏中的突变。
然而,HDR受限于递送长DNA修复模板的需要、其在非分裂或慢分裂中的低效率、以及其在非分裂或慢分裂中的低效率。
分裂细胞类型,以及其产生的遗传毒性双链断裂。为了解决这些局限性,
该提案将开发两种基于CRISPR的基因校正策略,这些策略不需要双链断裂:
引物编辑和腺嘌呤碱基编辑。Prime editor(PE)由Cas9切口酶组成,Cas9切口酶融合到逆转录酶。
转录酶和一个扩展的指导RNA,该指导RNA兼作逆转录酶的模板以进行复制编辑
基因组靶点。腺嘌呤碱基编辑器(ABE),其由融合到多核苷酸的Cas9切口酶组成。
腺苷脱氨酶,可以纠正小鼠肝脏中的G到A点突变。PI*Z等位基因是由G到A
突变;因此,是通过ABE和PE进行基因校正的良好候选者。
本项目的目标是通过开发ABE优化PE和ABE工具用于体内AAT基因校正
和PE载体,其可被腺相关病毒(AAV)衣壳容纳;最大化靶向
编辑和最小化脱靶编辑;以及确定免疫应答如何影响编辑。目标1将
开发用于体内AAT基因校正的新型PE工具。将开发一个分离式AAV PE平台,
在体内启动编辑效率,然后在PI*Z中测量PE基因校正和肺表型。
转基因小鼠模型和临床相关的AAT null/PI*Z小鼠模型。目标2将加强
ABE对体内AAT基因校正的特异性。长期ABE表达可诱导脱靶编辑。
因此,新的ABE变体将被优化以增加活性并降低RNA编辑效应,并分裂
将在PI*Z模型中研究ABE的AAV递送。该目标还将开发自失活ABE,
减少脱靶效应。目的3将表征和减轻对PE和ABE的免疫应答,
病毒逆转录酶和细菌TadA蛋白,以及已知抗原Cas9。这一目标将
研究小鼠对PE和ABE的抗体和T细胞应答,免疫应答如何调节编辑,
CAR-Treg是否可以减轻免疫反应。项目2将受益于与
本P01中的其他项目和核心。完成该项目将提高PE的效率和安全性,
ABE在体内,为AATD和其他单基因疾病提供了HDR独立的基因编辑蓝图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wen Xue其他文献
Wen Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wen Xue', 18)}}的其他基金
In vivo prime editing for precision cancer mouse models
精准癌症小鼠模型的体内 Prime 编辑
- 批准号:
10735971 - 财政年份:2023
- 资助金额:
$ 54.44万 - 项目类别:
Editing of the AAT locus using novel base editing and prime editing technologies
使用新颖的碱基编辑和 Prime 编辑技术编辑 AAT 基因座
- 批准号:
10674947 - 财政年份:2021
- 资助金额:
$ 54.44万 - 项目类别:
Editing of the AAT locus using novel base editing and prime editing technologies
使用新颖的碱基编辑和 Prime 编辑技术编辑 AAT 基因座
- 批准号:
10270093 - 财政年份:2021
- 资助金额:
$ 54.44万 - 项目类别:
Investigating microRNA miR-34a in lung cancer development and therapy
研究 microRNA miR-34a 在肺癌发展和治疗中的作用
- 批准号:
8916640 - 财政年份:2014
- 资助金额:
$ 54.44万 - 项目类别:
Investigating microRNA miR-34a in lung cancer development and therapy
研究 microRNA miR-34a 在肺癌发展和治疗中的作用
- 批准号:
8901573 - 财政年份:2014
- 资助金额:
$ 54.44万 - 项目类别:
Investigating microRNA miR-34a in lung cancer development and therapy
研究 microRNA miR-34a 在肺癌发展和治疗中的作用
- 批准号:
8353069 - 财政年份:2012
- 资助金额:
$ 54.44万 - 项目类别:
Investigating microRNA miR-34a in lung cancer development and therapy
研究 microRNA miR-34a 在肺癌发展和治疗中的作用
- 批准号:
8546318 - 财政年份:2012
- 资助金额:
$ 54.44万 - 项目类别:
Liver-directed somatic gene correction rAAV system of regulatable Cas9/sgRNA
可调节Cas9/sgRNA的肝脏定向体细胞基因校正rAAV系统
- 批准号:
9322551 - 财政年份:
- 资助金额:
$ 54.44万 - 项目类别:
Liver-directed somatic gene correction rAAV system of regulatable Cas9/sgRNA
可调节Cas9/sgRNA的肝脏定向体细胞基因校正rAAV系统
- 批准号:
9071194 - 财政年份:
- 资助金额:
$ 54.44万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 54.44万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 54.44万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 54.44万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 54.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 54.44万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 54.44万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 54.44万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 54.44万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 54.44万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 54.44万 - 项目类别: